Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  non smooth system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, an approach to analyze the observability and controllability of sandwich systems with backlash is proposed. In this method, a non-smooth state-space function is used to describe the sandwich systems with backlash which are also non-smooth non-linear systems. Then, a linearization method based on non-smooth optimization is proposed to derive a linearized state-space function to approximate the non-smooth sandwich systems within a bounded region around the equilibrium point that we are interested in. Afterwards, both observability and controllability matrices are constructed and the methods to analyze the observability as well as controllability of sandwich system with backlash are derived. Finally, numerical examples are presented to validate the proposed method.
EN
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview of possibilities to formulate non-smooth problems and point out connections between the traditional non-smooth theory and interval analysis. Moreover, we summarize already existing verified methods for solving initial value problems with non-smooth (in fact, even not absolutely continuous) right-hand sides and propose a way of handling a certain practically relevant subclass of such systems. We implement the approach for the solver VALENCIA-IVP by introducing into it a specialized template for enclosing the first-order derivatives of non-smooth functions. We demonstrate the applicability of our technique using a mechanical system model with friction and hysteresis. We conclude the paper by giving a perspective on future research directions in this area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.