The aim of the study study was to model, with the use of a neural network algorithm, the significance of a variety of factors influencing the development of hearing loss among industry workers. The workers were categorized into three groups, according to the A-weighted equivalent sound pressure level of noise exposure: Group 1 (LAeq < 70 dB), Group 2 (LAeq 70-80 dB), and Group 3 (LAeq > 85 dB). The results obtained for Group 1 indicate that the hearing thresholds at the frequencies of 8 kHz and 1 kHz had the maximum effect on the development of hearing loss. In Group 2, the factors with maximum weight were the hearing threshold at 4 kHz and the worker’s age. In Group 3, maximum weight was found for the factors of hearing threshold at a frequency of 4 kHz and duration of work experience. The article also reports the results of hearing loss modeling on combined data from the three groups. The study shows that neural data mining classification algorithms can be an effective tool for the identification of hearing hazards and greatly help in designing and conducting hearing conservation programs in the industry.
Noise induced hearing loss (NIHL) as one of the major avoidable occupational related health issues has been studied for decades. To assess NIHL, the excitation pattern (EP) has been considered as one of the mechanisms to estimate the movements of the basilar membrane (BM) in the cochlea. In this study, two auditory filters, dual resonance nonlinear (DRNL) filter and rounded-exponential (ROEX) filter are applied to create two EPs, the velocity EP and the loudness EP respectively. Two noise hazard metrics are proposed based on two EPs to evaluate hazardous levels caused by different types of noise. Moreover Gaussian noise and single-tone noise are simulated to evaluate performances of the proposed EPs and the noise metrics. The results show that both EPs can reflect the responses of the BM to different types of noise. For Gaussian noise there is a frequency shift between the velocity EP and the loudness EP. The results suggest that both EPs can be used for assessment of NIHL.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.