Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nośność obliczeniowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Podano wyniki obliczeń osiadania stóp i ław fundamentowych posadowionych bezpośrednio na najczęściej spotykanych w praktyce budowlanej gruntach, przy obciążeniu odpowiadającym nośności obliczeniowej podłoża. Stwierdzono, że obliczone osiadania mogą przekraczać osiadania graniczne w przypadku fundamentów o dużych wymiarach, przy występowaniu pod nimi piasków średnich, grubych i żwirów.
EN
The article attempts to determine whether the settlement of typical direct foundations (strip foundations and spot footings), situated on the most commonly encountered in practice soils, with a load corresponding with calculated bearing capacity of the ground, are compatible with norm requirements. The calculations have shown that they can exceed smax for the foundations with large dimensions, in case of non-cohesive soils beneath them: sand medium, coarse and gravel.
EN
Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.
PL
Stosowane obecnie w budownictwie metalowym pręty cienkościenne należą do grupy elementów, których nośność przekroju jest warunkowana zjawiskami lokalnej lub dystorsyjnej utraty stateczności. Przekrój poprzeczny klasy 4. jest na ogół złożony ze smukło – płytowych ścianek, które w analizie można modelować wprost jako płyty. W aktualnie obowiązującej normie europejskiej EC3, zjawiska wyboczenia lokalnego i wyboczenia dystorsyjnego, pomimo różnic w długościach wyboczeniowych, uwzględnia się poprzez redukcję nośności przekroju. Stosuje się tutaj metodę szerokości efektywnej (dla wyboczenia lokalnego) oraz grubości zredukowanej (dla wyboczenia dystorsyjnego). Po uwzględnieniu obu zjawisk, otrzymujemy przekrój efektywny służący do obliczania odpowiednich charakterystyk geometrycznych (np. Aeff, Weff). Natomiast ogólną utratę stateczności pręta uwzględnia się za pomocą współczynnika redukcyjnego obliczanego na podstawie smukłości względnej ogólnej utraty stateczności. W związku z tym, poprawne wyznaczenie naprężeń krytycznych wyboczenia lokalnego (w zakresie sprężystym) nabiera szczególnego znaczenia. Stanowi bowiem podstawę do wyznaczenia: 1) szerokości efektywnych poszczególnych płyt (ścianek), 2) naprężeń krytycznych wyboczenia dystorsyjnego (zastępczy przekrój poprzeczny usztywnienia składa się z odpowiednich szerokości efektywnych), oraz 3) ogólnej smukłości względnej elementu. W normach EC3 dotyczących projektowania elementów cienkościennych (o przekroju klasy 4.) przyjęto koncepcję separacji płyt składowych przekroju przy założeniu ich swobodnego podparcia na podłużnych krawędziach łączenia. Ponadto pominięto, często występujący w praktyce, efekt wzdłużnej zmienności naprężeń. Takie założenia upraszczające odbiegają od rzeczywistego zachowania się elementu cienkościennego pod obciążeniem. Liczne badania doświadczalne oraz symulacje numeryczne (np. MES) wykazują, że w rzeczywistych przekrojach cienkościennych występuje wzajemne sprężyste zamocowanie ścianek składowych. Ponadto, w wielu technicznie ważnych przypadkach, występuje wzdłużna zmienność naprężeń. W pracy przedstawiono metodę obliczeń nośności przekroju cienkościennego wrażliwego na wyboczenie lokalne na podstawie utraty stateczności najsłabszej płyty (ścianki). Punktem wyjścia jest założenie, że w przekroju cienkościennym można wyróżnić ściankę „najsłabszą”, która jest sprężyście zamocowana w sąsiedniej ściance usztywniającej (RP). „Płytą krytyczną” (CP) nazwano tę ściankę kształtownika cienkościennego, która w danym stanie naprężenia charakteryzuje się najniższymi naprężeniami krytycznymi. Założono, że połączenie płyty krytycznej z płytą podpierającą jest sztywne, tzn. na podłużnej krawędzi ich łączenia zachowane są warunki ciągłości przemieszczeń (kątów obrotu) i sił (momentów zginających). Dalej ściankę krytyczną modelowano, w zależności od warunków brzegowych, jako sprężyście zamocowaną przeciw obrotowi płytę przęsłową lub wspornikową. Oznacza to, że naprężenia krytyczne dla płyty krytycznej są wyższe niż przy normowym założeniu jej swobodnego podparcia. Stopień sprężystego zamocowania opisano za pomocą wskaźnika utwierdzenia κ, zmieniającego się od 0 dla swobodnego podparcia, do 1 dla pełnego utwierdzenia. Wskaźnik ten oszacowano w oparciu o założoną postać wymuszonego odkształcenia płyty usztywniającej, przy uwzględnieniu wpływu naprężeń ściskających w jej płaszczyźnie. Współczynniki wyboczeniowe (k) dla tak sprężyście zamocowanych i zmiennie obciążonych na długości płyt krytycznych zamieszczono w cyklu artykułów autora [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. W pracach tych uwzględniono wzdłużny rozkład naprężeń wg funkcji stałej, liniowej lub nieliniowej (wg paraboli 2. stopnia). Dla tak obliczonych naprężeń krytycznych wyznaczono „lokalną” nośność krytyczną przekroju, która ogranicza zakres ważności teorii prętów cienkościennych Własowa (o nieodkształcalnym konturze przekroju). Przekroje, w których (dla określonych proporcji geometrycznych) ścianki ściskane ulegają jednoczesnej utracie stateczności (pod danym rozkładem naprężeń), nazwano przekrojami „zerowymi”. W ich przypadku nie występuje wzajemne sprężyste zamocowanie płyt sąsiednich i spełnione jest normowe założenie separacji przegubowo podpartych płyt składowych przekroju pręta.
EN
Problems associated with the estimation of partial factors for structural systems, subsystems and buckling of individual elements are dealt with in this paper. Aspects related to resistance factors for the section resistance and member resistance are in particular referred to. The Eurocode’s approach of resistance partial factor calibration assisted by experimental data for subframe systems is also summarized.
PL
Stan graniczny nośności konstrukcji, projektowanej w tradycyjnym podejściu na podstawie efektów oddziaływań jest oceniany z niezawodnościowego modelu szeregowego. Kalibrację współczynników częściowych do nośności przeprowadza się wówczas na podstawie analizy niezawodności pojedynczego elementu konstrukcji (pręta lub węzła). Eurokod stalowy [4] wprowadził zasady projektowania bazujące na bardziej złożonych modelach nośności niż w [8], gdyż stan graniczny można ocenić na podstawie warunku stateczności technicznej podukładu konstrukcji lub w ogólności, jak przedstawia to warunek (2.1) - na podstawie punktu granicznego na ścieżce równowagi wyznaczonej dla nieidealnego modelu całej konstrukcji. Pojawia się pytanie, czy stosowanie do nośności wyznaczonej na podstawie bardziej złożonych modeli mechaniki konstrukcji współczynników częściowych wyspecyfikowanych do oceny nośności pojedynczych elementów prowadzi do bezpiecznych oszacowań. Kalibracja współczynników częściowych w metodzie stanów granicznych może być dokonana przy różnych założeniach wyjściowych. Model niezawodności i ogólne zasady przyjętego w Eurokodach rozdziału docelowego wskaźnika niezawodności na składowe odnoszące się do ustalenia obliczeniowych oddziaływań i ich kombinacji oraz do ustalania nośności obliczeniowej zostały podane w Eurokodzie [1]. W artykule przedstawiono zagadnienia dotyczące przyjęcia współczynników częściowych do nośności układu lub podukładu konstrukcyjnego. Opisano eurokodową procedurę wykorzystującą wyniki badań doświadczalnych do kalibracji współczynników częściowych do nośności.
PL
W pracy przedstawiono podstawowe sposoby określania nośności geotechnicznej pali wciskanych zgodne z zasadami PN-EN 1997-1. Eurokod 7: Projektowanie geotechniczne. Zasady ogólne zostały oparte na wynikach badań statycznych nośności pali, wynikach badań podłoża, wynikach badań dynamicznych pali: nośności pali przy dużych odkształceniach lub wpędach/wzorach dynamicznych. Poszczególne metody określania nośności geotechnicznej pali wciskanych przedstawiono w postaci procedur obliczeniowych wykorzystujących alternatywne w porównaniu z powszechnie stosowanymi metodami wg PN- PN-83/B-02482 – metody projektowania. Każdy z omówionych sposobów projektowania zilustrowano przykładem obliczeniowym opartym na danych zaczerpniętych z realizacji rzeczywistych fundamentów palowych w technologii żelbetowych pali prefabrykowanych wbijanych. Określone różnymi sposobami nośności geotechniczne pali zostały każdorazowo zweryfikowane metodami alternatywnymi zgodnie z wymaganiami Eurokodu 7. Porównanie wyników projektowania i weryfikacji nośności pali wciskanych uzyskanych różnymi sposobami potwierdza spójność koncepcji projektowania tego rodzaju elementów geotechnicznych przyjętą w Eurokodzie 7 i możliwość wymiennego stosowania poszczególnych sposobów projektowania pali w zależności od warunków realizacji projektu. Przedstawione w pracy przykłady projektowania pali prezentują również zawarte w Eurokodzie 7 możliwości aktywnego podejścia do kształtowania wartości nośności obliczeniowej i towarzyszącego jej poziomu bezpieczeństwa poprzez przyjęcie odpowiedniej strategii projektowania oraz określenia właściwego zakresu i rodzaju badań wykonywanych na potrzeby projektowania. Powszechne wdrożenie do krajowej praktyki projektowania pali zasad i reguł Eurokodu 7 umożliwi także wykorzystanie światowego dorobku w zakresie metod określania nośności granicznej pali.
EN
The article provides an overview of basic methods of calculating geotechnical bearing capacity of piles in accordance with the provisions of PN-EN 1997-1 (Eurocode 7): Geotechnical Design – General Rules, based on the results of static load tests, soil investigation and results of dynamic load tests: pile capacities with high deformations or pile sets/dynamic formulas. Each method of calculating bearing capacities of compressed piles is presented in the form of a calculation procedure applying design methods alternative to the widely used methods pursuant to PN- PN-83/B-02482. They are furthermore illustrated with examples of calculation based on real data from actual driven reinforced concrete pile applications. Pile capacities determined by means of various methods are always verified with alternative methods according to the requirements of Eurocode 7. Comparison of the results of design and verification of capacities of compressed piles proves coherence of design concepts assumed in Eurocode 7 and possibility of alternative applications of particular pile design methods, depending on project conditions and requirements. The examples of pile designs provided in the article also show a wide scale of possibilities in Eurocode 7 concerning an active approach to calculation of design capacities and corresponding safety level by adopting an adequate design method and correct determination of scope and type of tests.
8
Content available remote Obliczanie spoin według Eurokodu 3
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.