Nowadays, agriculture has to meet the growing food demand together with high requirements of environmental protection, especially regarding the climate change. The greenhouse gas emissions differ not only on a global, but also on a regional scale, and mitigation strategies are effective when they are adapted properly. Therefore, the aim of this paper is to present the results of methane (CH4) and nitrous oxide (N2O) emissions inventory on a regional level in Poland in years 1999-2015. The CH4 and N2O emissions were calculated according to the methodology used by the National Centre for Emissions Management (NCEM) for national inventory for United Nations Framework Convention on Climate Change and Kyoto Protocol. The data were taken from Central Statistical Office of Poland. The CH4 emissions in all studied years varied strongly between voivodeships and ranged from 5.6-7.5 Gg y-1 in the Lubuskie Voivodeship to 84.8-104.3 Gg y-1 in the Mazowieckie Voivodeship. While in most voivodeships the CH4 emissions dropped down, in Podlaskie, Warmińsko-Mazurskie, and Wielkopolskie voivodeships, the emissions of this gas increased significantly as a consequence of the development of dairy and meat production. In 1999, the highest N2O fluxes were calculated for the Wielkopolskie (5.7 Gg y-1), Mazowieckie (4.8 Gg y-1) Kujawsko-Pomorskie (3.5 Gg y-1) and Lubelskie (3.3 Gg y-1) voivodeships, while in 2015, the highest nitrous oxide emissions were calculated for the Wielkopolskie (7.3 Gg y-1), Mazowieckie (5.5 Gg y-1), Kujawsko-Pomorskie (4.1 Gg y-1) and Podlaskie (4.1 Gg y-1) voivodeships. In the studied period, the contribution of N2O emissions from crop production increased in almost all voivodeships except the Podlaskie, Lubuskie and Warmińsko-Mazurskie regions. The growth in emissions from mineral fertilization and crop residue incorporation, together with the increase of emission from the animal sector in some regions of Poland, resulted in the higher national emission of nitrous oxide in the period of 1999 to 2015. Although there is a range of GHG reduction possibilities, the mitigation should be adapted with caution, on the basis of precisely calculated GHG emissions. The best management practices, if followed carefully, may reduce the environmental burden of the agricultural production and enhance its profitability.
Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR) in a stoker boiler (WR 25 type). Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.