Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  niedokrwienie
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
In vitro ischemia models are designed to study various aspects of hypo-perfusion, focusing on the consequences of acute events under body temperature. Cold ischemia is less investigated even though the beneficial effects of cooling is expected. The aim of the present work was to develop a device modeling cold and warm ischemia in vitro. Oxygen-glucose deprivation was applied with continuous nitrogen flow and glucose-free cell culture media to mimic ischemia. The temperature in both chambers were independently set between 4 and 37 °C. Samples were placed inside for the ischemic period, followed by a reperfusion stage under standard cell culture conditions. We tested rat calvaria bone pieces undergoing 1, 7, 12 and 24 h of ischemia at 4 and 37 °C. After 24 h of reperfusion, cell number was measured with a tetrazolium cell viability assay. One hour of warm ischemia paradoxically increased the post-reperfusion cell count, while cold-ischemia had an opposite effect. After 7 h of warm ischemia the cells were already unable to recover, while under cold ischemia 60% of the cells were still functioning. After 12 h of cold ischemia 50% of the cells were still be able to recover, while at 24 h even the low temperature was unable to keep the cells alive. The markedly different effect of warm and cold ischemia suggests that this newly designed systemis capable of reliable and reproducible modeling of ischemic conditions. Moreover, it also enables deeper investigations in the pathophysiology of cold ischemia at cellular and tissue level.
2
Content available remote Towards online use of body surface potentiaI mapping in clinical research
EN
Body surface potential mapping (BSPM) is commonly used in clinical research. The next step is to bring BSPM to bedside use and also do basic data analysis during the measurement. In this online use, the measurement and analysis methods have to be particularly robust and easy to use. The signal quality should be good and the results repeatable. The BSPM measurement system used by Helsinki group consists of a single-use strip electrode set, a portable amplifier, and a laptop computer with docking station. In online analysis methods, easy display of potential maps plays a key role. The Helsinki group uses a 2D or 3D pseudocolor display with contour lines. In 3D visualization the isopotential surfaces are created by subdividing triangles. In software, the trade-off between reliability and incorporation of new ideas can be solved with interprocess communication. Potential uses of online BSPM are for ex ample guiding of a pacing catheter with dipole fitting. and detection of ischemia by visual analysis of ST-integral maps. Currently the bottleneck in Helsinki online BSPM system is the time-consuming preparation of the electrode set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.