Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  neurons
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
This work presents concepts of the use of algorithms inspired by the functions and properties of the nervous system in dense wireless networks. In particular, selected features of the brain consisting of a large number of nerve connections were analyzed, which is why they are a good model for a dense network. In addition, the action of a selected cells from the nervous system (such as neuron, microglia or astrocyte) as well as phenomena observed in it (e.g. neuroplasticity) are presented.
PL
W tej pracy przedstawiono koncepcje zastosowania algorytmów inspirowanych funkcjami i własnościami układu nerwowego w gęstych sieciach bezprzewodowych. W szczególności analizie poddano wybrane cechy mózgu składającego się z ogromnej liczby połączeń nerwowych, dlatego będących dobrym wzorem dla gęstej sieci. Ponadto przedstawiono działanie wybranych komórek z układu nerwowego (takich jak neuron, mikroglej czy astrocyt) a także zjawiska w nim obserwowane (np. neuroplastyczność).
EN
This work presents concepts of the use of algorithms inspired by the functions and properties of the nervous system in dense wireless networks. In particular, selected features of the brain consisting of a large number of nerve connections were analyzed, which is why they are a good model for a dense network. In addition, the action of selected cells from the nervous system (such as neuron, microglia or astrocyte) as well as phenomena observed in it (eg. neuroplasticity) are presented.
EN
This paper presents developments in the area of brain-inspired wireless communications relied upon in dense wireless networks. Classic approaches to network design are complemented, firstly, by the neuroplasticity feature enabling to add the learning ability to the network. Secondly, the microglia ability enabling to repair a network with damaged neurons is considered. When combined, these two functionalities guarantee a certain level of fault-tolerance and self-repair of the network. This work is inspired primarily by observations of extremely energy efficient functions of the brain, and of the role that microglia cells play in the active immune defense system. The concept is verified by computer simulations, where messages are transferred through a dense wireless network based on the assumption of minimized energy consumption. Simulation encompasses three different network topologies which show the impact that the location of microglia nodes and their quantity exerts on network performance. Based on the results achieved, some algorithm improvements and potential future work directions have been identified.
EN
Spiking neural P systems (in short, SN P systems) have been introduced as computing devices inspired by the structure and functioning of neural cells. The presence of unreliable components in SN P systems can be considered in many different aspects. In this paper we focus on two types of unreliability: the stochastic delays of the spiking rules and the stochastic loss of spikes. We propose the implementation of elementary SN P systems with DRAM-based CMOS circuits that are able to cope with these two forms of unreliability in an efficient way. The constructed bio-inspired circuits can be used to encode basic arithmetic modules.
6
Content available remote What Can a Mathematician do in Neuroscience?
EN
Mammalian brain is one of the most complex objects in the known universe, as it governs every aspect of animal’s and human behavior. It is fair to say that we have a very limited knowledge of how the brain operates and functions. Computational Neuroscience is a scientific discipline that attempts to understand and describe the brain in terms of mathematical modeling. This user-friendly review tries to introduce this relatively new field to mathematicians and physicists by showing examples of recent trends. It also discusses briefly future prospects for constructing an integrated theory of brain function.
PL
Mózg ssaków jest jednym z najbardziej złożonych obiektów we wszechświecie. Jest odpowiedzialny za sterowanie wszystkimi aspektami zachowań zwierzęcia i człowieka. Obecnie usprawiedliwione wydaje się stwierdzenie, ze nasza wiedza na temat pracy mózgu i jego funkcjach jest dość ograniczona. Neurobiologia obliczeniowa jest dyscyplina naukowa, która próbuje zrozumieć i opisać mózg w kategoriach modelowania matematycznego. W tej pracy zawarto przyjazny dla czytelnika przegląd zagadnień, który ma na celu wprowadzenie w ten stosunkowo nowy dla matematyków i fizyków obszar badawczy, pokazując przykłady najnowszych trendów w tej dziedzinie. Artykuł omawia także krótko przyszłe perspektywy dla budowy zintegrowanej teorii funkcji mózgu. Neurobiologia Obliczeniowa ma wiele osiągnięć w modelowaniu procesów neurofizjologicznych. W szczególności, realistyczne modelowanie dynamiki pojedynczych neuronów osiągnęło wysoki poziom wierności z danymi eksperymentalnymi. Wielkim wyzwaniem pozostaje natomiast kluczowe zagadnienie, jak przejść od opisu dynamiki pojedynczych neuronów do realistycznego opisu dynamiki całej sieci neuronów. Generalnie, poznanie i zrozumienie funkcjonowania mózgu w oparciu o modele matematyczne może mieć kolosalne znaczenie praktyczne dla społeczeństwa. Po pierwsze, w medycynie w radzeniu sobie z neurologicznymi schorzeniami takimi jak autyzm, schizofrenia, czy Alzheimer, które są coraz powszechniejsze. Mechanizmy biofizyczne tych chorób nie są znane, i być może dobra teoria funkcjonalna mogłaby w tym pomóc. Po drugie, w technologii tzw. inteligentnych urządzeń. Obecnie nawet najszybsze superkomputery nie są w stanie poradzić sobie z wydawało by się prostym zadaniem takim jak efektywne rozpoznawanie twarzy czy obiektów, z czym dość wolny ludzki mózg nie ma żadnych problemów. Bez wątpienia, inteligentne urządzenia skonstruowane na bazie mózgu miałyby bardzo wiele zastosowań, w różnych sferach działalności człowieka. Wydaje się, że zintegrowana teoria pracy mózgu mogłaby wiele wnieść w tym kierunku
EN
The contribution shows Elman neural network used for non-linear system identification. A simple example of non-linear dynamic system is used to test the performance of networks with different number of hidden units. Results shows that higher number of hidden neurons surprisingly degrades the performance of the network both in training and generalisation abilities.
PL
W pracy przedstawiono zastosowanie neuronowej sieci Elmana do identyfikacji układu nieliniowego. Na przykładzie prostego nieliniowego układu dynamicznego zbadano osiągi sieci z różną liczbą ukrytych neuronów. Wyniki wskazują, że większe liczb)' ukrytych neuronów zmniejszają zdolności treningowe i uogólniające sieci.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.