The paper develops the modified structure of the Takagi-Sugeno-Kang neuro-fuzzy network with a theoretical basis for its adaptation. The simplified structure follows from the basic theoretical considerations concerning the way of creating the inference rules. The important point of this solution is the application of the fuzzy clustering algorithm to the input data. The efficiency of the proposed solution has been checked on the examples of regression and classification problems concerning the electronic nose.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.