Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  narrow space
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A steady laminar flow of a compressible newtonian fluid is considered, in a narrow space between two surfaces of revolution, rotating with generally different angular velocities about a common axis of symmetry. The problem statement for two classes of throughflow, with full and rotational inertia, is formulated. A procedure for perturbing a creeping flow solution and an iteration scheme are developed to produce a solution for higher approximations. The solution depends on seven parameters and is asymptotic in the sense of its good convergence in the second approximation for both classes of throughflow. Results for the second class of throughflow are presented for the velocity components, the pressure and temperature distributions for typical shapes of surfaces such as disks and spherical surfaces.
EN
A steady laminar flow of an incompressible Newtonian fluid with variable viscosity and thermal conductivity is considered, in a narrow space between two surfaces of revolution, rotating with generally different angular velocities about a common axis of symmetry. The problem statement for two classes of throughflow, with full and rotational inertia, is fonnulated. A procedure for perturbing a creeping flow solution and an iteration scheme are developed to produce a solution for higher approximations. The solution depends on eight or seven parameters and is asymptotic in the sense of its good convergence in the second approximation for both classes of throughflow. Results for second class of throughflow are presented for the velocity components, the pressure and the temperature distributions for typical shapes of surfaces as disks and spherical surfaces.
EN
The steady laminar flow of an electrorheological fluid (ERF) through narrow space between two rotating surfaces of revolution is considered. The ERF is modelled as a viscoplastic fluid of Herschel - Bulkley. The quasi - linearized equations of flow for axial symmetry in the curvilinear coordinate system x, 'teta', y are used. The obtained solutions to the equations of motion have been illustrated by examples of flow through the clearance of constant thickness between rotating disks and spherical surfaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.