Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanostruktura węglowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Transmission electron microscope studies on carbon nanostructured materials
EN
Purpose: Carbon nanostructured materials are important and still not satisfactorily recognised products. Structure can be investigated with sufficient resolution using transmission electron microscopy but main difficulties are connected with low scattering of electrons by carbon atoms and destruction by knock-on damage caused by collisions of high energy electrons with specimen atoms. Design/methodology/approach: Scanning/transmission electron microscopy (S/TEM) deliver a chance to improve the quality of performed investigations. BF, DF and HAADF detectors were applied for various carbon materials: carbon nanotubes, nano-onions, nanodiamonds and graphitized carbon black. Findings: Obtained results confirmed the usefulness of applied microscopy techniques. Research limitations/implications: Sample preparation is crucial for performed investigations. Because of ionization damage caused by collisions of high energy electrons, results obtained with high-voltage TEM have to be analysed with caution, hence low-voltage electron microscopy is strongly recommended. Originality/value: New and not commonly used techniques were applied for carbon nanostructured materials studies. Advantages and disadvantages of them were compared.
PL
W artykule przedstawiono stan badań nad możliwością innowacyjnego wykorzystania surowców węglowych, między innymi do wytwarzania energii elektrycznej w węglowych ogniwach paliwowych. Szczególny nacisk został położony na osiągnięcia naukowe w dziedzinie nanostruktur węglowych. Przedstawiono charakterystykę i właściwości materiałów węglowych, takich jak: nanoporowate materiały węglowe, nanorurki węglowe, grafen i fulereny.
EN
The article presents the state-of-the-art on the potential innovative application of coal in electricity generation applying direct carbon fuel cells. Particular emphasis is put on R&D achievements in the area of carbon nanostructures. Presented are the characteristics and properties of such carbon materials as: nonporous carbon materials, carbon nanotubes, graphene and fullerenes.
3
Content available remote Funkcjonalizacja chemiczna nanorurrek węglowych
EN
The discovery of carbon nanotubes (CNTs) and the recognition of their exceptional properties have generated a great deal of interest. The possible applications arise from the remarkable properties of CNTs such as the highest Young's modulus, highest thermal conductivity, ballistic electron transport, and field emission resulting from high aspect ratio. The functionalization of carbon nanotubes has become a very actively discussed topic because the CNTs modification is believed to open the road towards real nanotechnology applications. This review with 266 references describes the results on covalent and noncovalent chemical functionalization of carbon nanotubes and related nanostructures. Physical and chemical properties as well as possible applications of functionalized CNTs are also presented.
EN
Carbon is a unique material and the research results have taken the subject forward in many new directions in recent years. In addition to the fullerenes, a new allotropic form of carbon discovered in 1985 and produced in macroscopic amount in 1990, carbon nanotubes were found by Iijima in 1991 in a cathode deposit, formed during DC arcing of graphite anode. Since their discovery, the latter ones have captured the imagination of physicists, chemists and materials scientists alike. They are attracted to carbon nanotubes because of their extraordinary electronic and mechanic properties. Further egzo- and endohedral functionalization of fullerenes resulted in a new class of compounds and heterofullerenes were also produced by substitution of carbon atoms in a cage by other (mostly boron and nitrogen) atoms. Recently new intriguing forms of nanocarbous have been also discovered including carbon onions, encapsulates, filled nanotubes, `peapods', etc. In this review these nanocarbons are presented with the emphasis on production techniques and formation mechanisms, structure characterization and the future fields of application. While carbon are, laser ablation and CCVD (Catalytic Chemical Vapor Deposition) are the main techniques to produce these species, they are also formed under quite ditferent experimental conditions which are presented. When one browses through the carbon literature, some other new forms of spheroidal nanocarbons (e.g. nanoflasks, nonohorns, nanofoams...) also crop up again and again and a brief discussion is given here of these most recently discovered nanostructures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.