Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanokryształ
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Ciągły wzrost zapotrzebowania na energię elektryczną w skali globalnej wiąże się z coraz wyższymi kosztami jej produkcji, wymuszającymi wdrażanie nowych rozwiązań technicznych, mniej szkodliwych dla środowiska naturalnego. Dotychczasowe metody produkcji energii elektrycznej pozyskiwanej z paliw kopalnych, emitujące do atmosfery ogromne ilości spalin i zagrażające egzystencji milionów żywych istnień są zastępowane energią odnawialną: wiatru, wody i słońca (elektrownie wodne, wiatrowe, fotowoltaiczne). Duży problem stanowi dostarczenie energii do często odległych odbiorców, co w znacznym stopniu ułatwiają już wdrażane osiągnięcia nanotechnologiczne.
EN
The continuous increase in demand for electricity on a global scale is associated with ever higher production costs, forcing the implementation of new technical solutions that are less harmful to the natural environment. The existing methods of producing electricity obtained from fossil fuels, emitting a huge amount of exhaust gases into the atmosphere and threatening the existence of millions of living creatures, is replaced by renewable energy of wind, water and sun (hydro, wind, photovoltaic power plants). A big problem is the supply of energy to often distant recipients, which is largely facilitated by the already implemented nanotechnology achievements.
EN
Luminescent Solar Concentrators (LSCs) suitable to work in conjunction with a new type of a silicon epitaxial edge-illuminated solar cell (EISC) are developed, and the operating principle of epitaxial EISCs and their specific properties are explained and discussed. The potential application of active composite materials based on luminescent nanocrystals dispersed in a polymer matrix (PMMA) in the LSCs technology is shown. The results of the synthesis of the transparent material by the incorporation of the clusters of co-doped Nd and Yb yttrium aluminum garnet Y3Al5O12 (YAG), gadolinium gallium garnet Gd3Ga5O12 (GGG) and yttrium oxide Y2O3 (YO) nanocrystals into the polymethyl methacrylate (PMMA) polymer matrix and the characterization of the synthesized materials by spectroscopic and emission dynamic studies are presented. The analyzed nanocrystals of YAG, GGG and YO compounds were prepared by the modified sol-gel method. The results indicate that the investigated materials, i.e. polymers with rare-earth containing oxide nanocrystals, can be useful for LSCs matched to the maximum sensitivity of a silicon EISC.
PL
Opracowano technologię luminescencyjnego koncentratora słonecznego (LSC) mogącego współpracować z nowego typu epitaksjalnymi ogniwami słonecznymi oświetlanymi krawędziowo (EISC). Przedstawiono zasadę działania i omówiono specyficzne cechy krzemowych ogniw typu EISC. Wskazano na potencjalne zastosowania w technologii LSC kompozytów aktywnych wytworzonych z wykorzystaniem nanokryształów luminescencyjnych wprowadzonych w matrycę polimerową (PMMA). Zsyntetyzowano przezroczysty kompozyt w wyniku wprowadzenia w matrycę z polimetakrylanu metylu (PMMA) nanokryształów granatu itrowo - glinowego Y3Al5O12 (YAG), granatu gadolinowo – galowego Gd3Ga5O12 (GGG) jak również tlenku itru Y2O3 (YO) domieszkowanych jonami Nd i Yb. Przedstawiono wyniki badań własności spektroskopowych nanokryształów otrzymanych zmodyfikowaną metodą zol-żel. Wyniki badań wytworzonych kompozytów polimerowych zawierających aktywne nanokryształy tlenkowe wskazują na możliwość ich zastosowania w luminescencyjnych koncentratorach słonecznych charakteryzujących się widmem fotoluminescencji dopasowanym do maksymalnej czułości widmowej krzemowego ogniwa krawędziowego.
PL
We współczesnym świecie beton jest jednym z najczęściej stosowanych materiałów budowlanych. Duże zapotrzebowanie na ten materiał oraz szybki rozwój technologii, który dokonał się w ciągu ostatnich lat sprawia, że stawiane są mu coraz wyższe wymagania dotyczące jakości i trwałości oraz technologii betonowania elementów i konstrukcji. W celu skrócenia procesów budowlanych coraz częściej stosuje się technikę prefabrykacji pozwalającą na złożenie całych konstrukcji z wcześniej wykonanych elementów oraz masową produkcję elementów małogabarytowych. Powszechnie stosowanymi prefabrykatami elementami infrastruktury drogowej są między innymi belki mostowe, elementy przepustów, panele, ekrany akustyczne oraz pale żelbetowe.
EN
Concrete is one of the most commonly used building materials in the modern world. Strong demand for this material and rapid technological development in recent years has placed higher demands on the quality, durability, and technology of concrete elements and construction. Increasingly, prefabricated technology is being used, with the aim of shortening construction processes; their use allows for assembly of an entire structure from pre-made parts and for the mass production elements of small dimensions. Commonly used prefabricated elements in road infrastructure include bridge girders, culvert elements, panels, sound barriers, and reinforced concrete piles.
4
Content available remote Rozmiarowe przemiany fazowe w nanokryształach
EN
Nanosized materials (nanoparticles, nanocrystals, quantum dots) have different properties than their conventional coarse-grained polycrystalline or bulk counterparts. The most characteristic feature of nanocrystals is the existence of the grain size-driven structural phase transitions. The literature data on such phase transitions are collected in the form of database. Different types of phase diagrams ,"grain size - temperature" are proposed and discussed.
PL
W obszernej literaturze dotyczącej kompozytów można doszukać się bardzo wielu definicji terminu "kompozyty", z których, w ocenie autora, przyjąć można bez zastrzeżeń tylko najprostszą: "(...) kompozyty są niejednorodną mieszaniną trwale połączonych jednorodnych faz (lub materiałów)" [1]. Liczne próby doskonalenia tej prostej definicji poprzez jej wyjaśnianie lub precyzowanie [2, 3] są niecelowe - im więcej dodanych wyjaśnień, tym gorzej dla definicji, która ma być stałym punktem odniesienia, a nie przedmiotem dyskusji. Uwaga ta wiąże się z próbą wyróżnienia kompozytów, w których znaczącą rolę mogą odgrywać nanokryształy, zatem "nano-kompozytów". Gdyby przyjąć niektóre z wyjaśnień proponowanych dla doprecyzowania definicji kompozytu, okaże się, że wiele materiałów nanokrystalicznych należałoby wykluczyć z grupy materiałów kompozytowych. Dla przykładu, dodanie stwierdzenia, iż "pomiędzy komponentami musi istnieć wyraźna granica rozdziału", prowadzi nieuchronnie do dyskusji (praktycznie: sporów) na temat metod, którymi "należy" obserwować owe granice rozdziału (mikroskopia optyczna, skaningowa, transmisyjna, sił atomowych etc.). Podobnie "doprecyzowanie" funkcji, jakie mają spełniać komponenty, czy też wyjaśnienie, że "właściwości kompozytu są funkcją właściwości komponentów i ich udziałów objętościowych" nie wnoszą niczego istotnego merytorycznie, mogą jedynie służyć do formalnego wykluczenia pewnych materiałów z grupy kompozytów. Intencją autora tego artykułu jest zwrócenie uwagi środowiska naukowego badań materiałowych na niektóre cechy nanokryształów, które mogą być wykorzystane do projektowania i otrzymywania materiałów kompozytowych o nowych właściwościach. Termin "nanokryształ" nie jest zdefiniowany jednoznacznie, co prowadzi do nieporozumień co do zasadności stosowania tego terminu zarówno w literaturze naukowej, jak i w projektach i programach badawczych. W pracy omówiono wybrane cechy fizyczne wyróżniające nanokryształy spośród innych materiałów polikrystalicznych ze szczególnym uwzględnieniem ich budowy atomowej. Przedyskutowano problemy badawcze, których rozwiązanie warunkuje rozwój nowych (nano-)technologii materiałowych, wykorzystujących w jak największym stopniu unikalne właściwości nanokryształów.
EN
In the vast literature on composite materials one can find a number of definitions of the term "composite". In the auther's opinion only the simplest one, i.e. "(...) composites are a nonhomogenous mixture of at least two permanently bound homogeneous phases (or materials)." [1], can be accepted without a doubt. Numerous attempts to improve this simple definition by its refinement or explanations [2, 3] results in its downgrading (the more additional comments, the less clear-cut the definition becomes), while the definition should serve as an unambiguous reference point and not as a subject of discussions. That conunent is to address particularly the attempts to group separately composites containing nanocrystals, thus "nano-composites". If we accepted some of the "refined" definitions of a composite we would have to admit that numerous nano-crystalline materials should be excluded from the class of composites. For example, an addition (to the definition of a composite) of a requirement that "there must exist a definite boundary between the components of a composite" leads to a discussion (more like a quarrel) on the methods that have to be used to observe the boundaries (optical microscope? SEM? TEM? AFM? ....?). Similarly, defining the function of the components or stating that "the properties of a composite are a function of the properties of its components and their content" does not explain anything and may only serve the purpose of excluding some materials from the class of composites. The intention of the author of this article is to turn the attention of the materials science community to some properties of nanocrystals which may be useful for obtaining composite materials with novel properties. The term "nanocrystal" itself is not unambiguously defined in the literature. That may lead to misunderstandings as to a justification of using this term both in the literature and in the research projects and programs. In this work we describe some selected physical properties specific to nanocrystals, with a particular reference to their atomic structure. We describe research problems that need to be solved to advance new (nano-)technologies which would take advantage of the unique properties of nanocrystals.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.