Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanohydroxyapatite coating
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this research was to study the properties of nanohydroxyapatite (nanoHAp) and nanohydroxyapatite, doped with nanosilver (nanoHAp/nanoAg), coatings obtained by an electrophoretic deposition process. The suspensions was prepared by dispersing 0.1 g of HAp nanopowder for nanoHAp coatings and 0.1 g of nanoHAp and 0.025 g nanoAg for nanoHAp/nanoAg coatings. The deposition was carried out for 1 min at 50 V voltage followed by drying at room temperature for 24 h and heating at 800°C for 1 h in vacuum. The thickness of the nanoHAp and nanoHAp/nanoAg coatings was found as of about 5 μm. The corrosion behavior tests made by potentiodynamic methods brought out slightly higher values of corrosion current for nanoHAp coatings and nanoHAp/nanoAg coatings as compared to the reference Ti13Zr13Nb specimen. The nanohardness of the nanoHAp coatings achieved 0.020 ± 0.004 GPa and of the nanoHAp/nanoAg coatings 0.026 ± 0.012 GPa. Nanoscratch test of the nanoHAp and nanoHAp/nanoAg coatings revealed an increased Critical Friction (mN) in the presence of nanosilver particles. The wettability angles decreased for nanoHAp/nanoAg coatings comparing to pure nanoHAp coatings on titanium alloy.
EN
The titanium and its alloys belong at present to the most preferred and commonly applied biomaterials for load-bearing implants. The surfaces of biomaterials are subjected to modification, including the hydroxyapatite coatings deposited in order to ensure corrosion resistance and better joining between an implant and a bone through the possibility of ingrowth bone into the coating. In this paper, the morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb flat surfaces using electrophoretic method are presented. Electrophoretic deposition at two different current values and two electrolytes (first – ethanol with nanoHAp, second – methanol with nanoHAp) was applied. The scanning electron microscopy examinations and wettability angle measurements showed an increase in the coating thickness, the surface coverage and decrease in biocompatibility with increasing voltage. The surface condition and biocompatibility of coatings were better when using methanol/nanoHAp solution as compared to the ethanol/nanoHAp one.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.