Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanocrystalline metals
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono wyniki badań morfologii i mikrostruktury obszarów odkształconych dynamiczne w ostrzelanych pociskami płytkach z dwóch nowych gatunków stali nanokrystalicznych. Badania wykonano na próbkach z nanokompozytowej stali bainityczno – austenitycznej (stal NBA) i ultrawytrzymałej stali maraging (stal MAR). Oceniono efekty ostrzału testowych płytek ze stali nanokrystalicznych. W ostrzelanych płytkach z obydwu stali w sąsiedztwie krawędzi krateru stwierdzono strukturalne efekty odkształcenia osnowy. W strefie odkształcenia powstały adiabatyczne pasma ścinania oraz mikropęknięcia. Średnia twardość adiabatycznych pasm ścinania w stali NBA jest wyższa od średniej twardość osnowy tej stali, natomiast w stali MAR stwierdzono efekt odwrotny - średnia twardość adiabatycznych pasm ścinania jest niższa od średniej twardości osnowy tej stali.
EN
Results of investigation of morphology and microstructure in dynamically deformed areas of fired with projectiles plates made of new grades of nanocrystalline steels have been presented. Investigation was carried out on specimens of nanocomposite bainite – austenite steel (NBA steel) and ultrastrength maraging steel (MAR steel). Effects of firing at test plates of the nanocrystalline steels have been assessed. In the plates of the both steels tested by firing in areas close to edge of the crater structural features of matrix deformation were found. In the deformation areas adiabatic shear bands and microcracks formed. Average hardness of adiabatic shear bands in NBA steel is higher than average hardness of matrix of this steel while in MAR steel an opposite effect was found – average hardness of adiabatic shear bands was lower than average hardness of matrix of this steel.
PL
W pracy scharakteryzowano właściwości mechaniczne materiałów nanokrystalicznych (MNK). Charakterystyki tej dokonano na podstawie analizy danych literaturowych oraz wyników badań własnych autora. Przeprowadzono analizę definicji tej grupy materiałów. Zaproponowano użycie dominującego mechnizmu odkształcenia jako kryterium podziału na charakterystyczne podgrupy oraz dokonano podziału na podgrupy. Zanalizowano charakterystyczne wymiary i odległości w strukturze materiałów z uwzględnieniem ich wpływu na właściwości mechaniczne. Dokonano krótkiego przeglądu metod wytwrzania nanokrystalicznych metali, z uwzględnieniem charakterystycznych cech mikrostruktury i właściowści tych materiałów wytwarzanych różnymi metodami. Opisano podstawowe mechanizmy odkształcenia, uwzględniając specyfikę ich działania w nanokrystalicznych metalach. Omówiono wpływ nanostruktury na takie właściwości mechaniczne MNK, jak moduł sprężystości, ciągliwość, naprężenie uplastyczniające, wytrzymałość na rozciąganie i ściskanie, odporność na pękanie oraz wytrzymałość zmęczeniowa. Zaproponowano sposoby modyfikacji struktury MNK mające na celu podwyższenie ich wytrzymałości, ciągliwości oraz odporności na pękanie. Do najbardziej obiecujących metod zaliczono: modyfikację struktury granic ziaren poprzez domieszkowanie materiału lub duże odkształcenie plastyczne i obróbkę cieplną; tworzenie struktur hybrydowych; zwiększanie zdolności materiałów do generacji dyslokacji i do bliźniakowania mechanicznego poprzez takie ich domieszkowanie, które spowoduje obniżenie niestabilnej energii błędu ułożenia i niestabilnej energii bliźniakowania. Opisano praktyczne znaczenie właściowści mechanicznych MNK i przedstawiono prognozy zastosowań tych materiałów na elementy miniaturowych urządzeń elektromechanicznych (MEMS), na silnie obciążone elementy większych konstrukcji oraz jako warstw wierzchnich w urzadzeniach pracujących w warunakch dużych obciążeń mechanicznych.
EN
The paper delas with mechanical properties of nanocrystalline materials (MNK) with special consideration of bulk nanocrystalline metals. The study is based on literature reports and the author's own experiments. The definition of MNK was analyzed. It was suggested to use the dominating deformation mechanisms as a criterion of materials classification and a division into subgroups was made. Characteristic microstructure sizes and distances in the structure of material with consideration of their influence on mechnical properties were analyzed. A short review of methods of MNK processing was presented. Characteristic features of microstructure and properties of the materials produced with various methods were shown. Fundamental deformation mechanisms were described with special attention to characteristic features of MNK deformation. Influence of nanostructure on mechanical properties was described, i.e. on modulus od elesticity, ductility, yield stress, tensile and compression strenght, fracture toughness and fatigue strenght. Methods of structure modification to achieve improvement the most promissing methods: modification of grain boundaries structure by means of materials alloying or by severe plastic deformation connected with heat treatment of the materials; productions of hybrid microstructures; improvement of the materials' ability of dislocations emission and mechanical twinning by alloying causing so that unstable stacking fault energy and unstable twinning energy decreases. Practical impact of the mechanical properties of MNK was described and applications of the materials for Microelectromechnical Systems (MEMS), reliable elements of bigger structures and surface layer of devices working under heavy loads were suggested.
3
Content available remote Manufacture of nanocrystalline metals by machining processes
EN
Purpose: The paper shows how extremely high-speed micromachining can be used as a method for manufacturing nanocrystalline feedstock from machining chips. The feedstock can be used in processes such as cold spraying that improve the surface characteristics of engineering components. Design/methodology/approach: The design and methodology relies on the construction and the correct operation of a micromachining operation that produces functional feedstock material that is produced from machining chips at spindle speeds in excess of half-a-million revolutions per minute. The approach provides an economical way of producing metal nanocrystals. Findings: The findings of the research show that intense plastic shearing of metals produces nanosized crystals in the range 30 nm to 150 nm. The crystals produced can be used to create superior funtional coatings on engineering components. Research limitations/implications: The research conducted implies that a cost effective and environmentallybenign process can produce metal nanocrystals. The limitations of the research are currently restricted to cold spraying of funtional surfaces. Practical implications: The practical implications of the research show that high-speed micromachining can be used as a method of producing nanocrystalline feedstock that can be used in a variety of secondary manufacturing processes in addition to cold spraying. Originality/value: The paper demonstrates the originality of using well-established machining processes for producing nanocrystalline metals. The paper describes how machining at extremely high speeds can be achieved to produce material that can be used to strengthen and harden engineering components.
4
Content available remote Description of viscoplastic flow accounting for shear banding
EN
The subject of the study is concerned with ultra fine grained (ufg) and nanocrystalline metals (nc-metals). Experimental investigations of the behaviour of such materials under quasistatic as well as dynamic loading conditions related with microscopic observations show that in many cases the dominant mechanism of plastic strain is multiscale development of shear deformation modes – called shear banding. The comprehensive discussion of these phenomena in ufg and nc-metals is given in [1], [2] and [3], where it has been shown that the deformation mode of nanocrystalline materials changes as the grain size decreases into the ultrafine region. For smaller grain sizes (d < 300 nm) shear band development occurs immediately after the onset of plastic flow. Significant strain-rate dependence of the flow stress, particularly at high strain rates was also emphasized. Our objective is to propose a new description of viscoplastic deformation, which accounts for the observed shear banding. Viscoplasticity model proposed earlier by P e r z y n a [4], [5] was extended in order to describe the shear banding contribution. The shear banding contribution function, which was introduced formerly by P e c h e r s k i [6], [7] and applied in continuum plasticity accounting for shear banding in [8] and [9] as well as in [10] and [11] plays pivotal role in the viscoplasticity model. The derived constitutive equations were identified and verified with application of experimental data provided in paper [2], where quasistatic and dynamic compression tests of ufg and nanocrystalline iron specimens of a wide range of mean grain size were reported. The possibilities of the application of the proposed description for other ufg and nc-metals are discussed.
PL
Przedmiotem studiów są drobnoziarniste oraz nanokrystaliczne metale. Badania doświadczalne zachowania się takich materiałów w warunkach obciążeń quasistatycznych oraz dynamicznych, w powiązaniu z obserwacjami mikroskopowymi, wykazują, że w wielu wypadkach dominującym mechanizmem odkształcenia plastycznego jest wieloskalowy rozwój form ścinania – zwany zwojem pasmami ścinania. Wyczerpująca dyskusja tych zjawisk zawarta jest w [1], [2] i [3], gdzie wykazano, że forma odkształcenia w materiałach drobnoziarnistych zmienia się, kiedy rozpatrujemy materiały o coraz mniejszym ziarnie. Dla materiałów o średniej wielkości ziarna mniejszej niż 300 nm obserwuje się rozwój pasm ścinania zaraz po inicjacji odkształcenia plastycznego. Podkreślono także znaczący wpływ prędkości odkształcenia na naprężenie płynięcia. Naszym celem jest propozycja nowego opisu odkształcenia lepkoplastycznego, w którym uwzględnia się udział obserwowanego rozwoju pasm ścinania. Model lepkoplastyczności proponowany wcześniej przez P e r z y n e [4], [5] został rozszerzony z wykorzystaniem opisu udziału pasm ścinania. Podstawową rolę w proponowanym modelu lepkoplastyczności odgrywa funkcja udziału pasm ścinania wprowadzona przez P e c h e r s k i e g o [6], [7] i zastosowana w kontynualnej teorii plastyczności z udziałem pasm ścinania w [8] i [9] oraz w [10] i [11]. Dokonano identyfikacji oraz weryfikacji wyprowadzonych równań konstytutywnych z zastosowaniem danych doświadczalnych otrzymanych w testach quasistatycznego i dynamicznego ściskania dla serii próbek wykonanych z drobnoziarnistego i nanokrystalicznego żelaza o szerokim zakresie średniej wielkości ziarna [2]. Przedyskutowano możliwości zastosowania proponowanego opisu do innych metali o budowie drobnoziarnistej i nanokrystalicznej.
EN
In recent years, a number of methods for refining the structure of metals by severe plastic deformation (SPD) have been developed. Some of those methods permit grain refinement to a nanometric level. These methods include, among others, high pressure torsion (HPT), equal channel angular pressing (ECAP) and hydrostatic extrusion (HE). The aim of this paper was a more detailed description of these methods and presentation of exemplary applications of these methods for structure refinement and improvement of mechanical properties of chosen materials. The results obtained in the present study show that the microstructures of the materials subjected to SPD studied in this work displayed considerable refinement, characterised by the formation of nanosized grains. Such a refinement resulted in increased tensile strength and hardness of the SPD materials studied in this work. In view of the results obtained on a large number of metals and alloys, a conclusion can be drawn that SPD could become an attractive way of processing materials for variety of applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.