Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanocrystalline layer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono własności i strukturę warstw nanokrystalicznych wykonanych łukowo metodą MMA nanostopem na osnowie żelaza na podłożu ze stali S355N w porównaniu do wybranych materiałów konstrukcyjnych odpornych na ścieranie stosowanych obecnie w przemyśle. Uzyskane napoiny poddano badaniom metalograficznym makro i mikroskopowym, określono wielkość ziarna z wykorzystaniem dyfraktometru rentgenowskiego Xpert PRO X-rey. Oceny własności użytkowych uzyskanych warstw nanokrystalicznych w porównaniu do obecnie stosowanych materiałów dokonano w oparciu o pomiar twardości oraz badania zużycia ściernego typu metal-minerał. Wyniki własności eksploatacyjnych warstw odniesiono do własności stali HARDOX 400.
EN
The present paper is the result of the investigations of the properties and structure of nanocrystalline layers deposited from iron-based nanoalloy on steel S355N substrate by manual metal arc welding method (MMA) compared to selected abrasion-resistant construction materials currently used in industry. The resultant deposit welds were subjected to macro and microscopic metallographic examination. Working properties of obtained nanocrystalline deposits weld compared to currently used materials were evaluated based on the hardness, abrasive wear of metal-to-mineral. The results of deposits weld working properties measurements were compared with property of wear resistant steel HARDOX 400 type used as reference material.
EN
Friction hardening is one of the surface hardening methods with the use of highly concentrated energy sources. In the “tool-treated surface” contact area, the surface layer of a metal is heated at a very high rate to phase transition temperatures, and then it is cooled at a high rate, which results in the formation of hardened nanocrystalline layers. The studies carried out have shown that a hardened nanocrystalline layer is formed in the surface layer in the course of friction hardening of cast-iron (EN-GJL-200) components. The layer thickness is 90–120 μm, and the microhardness is 7–8 GPa. Grain size of the hardened surface layer was equal to 20–40 nm near the treated surface. It is shown that the hardened layer significantly increases the serviceability of the pair “grey cast iron-grey cast iron” during sliding friction in the lubricated-abrasive medium. When increasing the unit load from 2 to 6 MPa, the wear rate of the hardened pair decreased by 2.6–4.2 times in comparison with an unhardened pair. Only one component of the friction pair was hardened.
PL
Utwardzanie tarciowe stanowi metodę umacniania z użyciem wysoko skoncentrowanych źródeł energii. W strefie styku narzędzia i powierzchni obrabianej warstwa wierzchnia jest podgrzewana z dużą prędkością (105–106 K/s) do temperatury zmian fazowych, a następnie jest schładzana z dużą prędkością (104–105 K/s), co wpływa na powstanie utwardzonych warstw nanokrystalicznych. Przeprowadzane badania doświadczalne wykazały, że w procesie utwardzania tarciowego części żeliwnych w warstwie wierzchniej formowana jest warstwa umocniona o strukturze nanokrystalicznej (warstwa biała). Uzyskana grubość warstwy wynosiła 90–120 μm, a mikrotwardość – 7–8 GPa, natomiast wielkość ziaren utwardzanej warstwy wierzchnej wynosiła 20–40 nm w pobliżu powierzchni obrabianej. Wykazano, że utwardzona warstwa znacznie zmnięsza intensywność zużycia podczas tarcia ślizgowego pary żeliwo szare–żeliwo szare pracujące w środku olejowo-ściernym. Utwardzona warstwa występowała tylko na jednej części współpracującej pary tarcia. W związku z tym intensywność zużywania pary utwardzonej przy zwiększaniu nacisku powierzchniowego od 2 MPa do 6 MPa zmniejszyła się o 2,6–4,2 razy w porównaniu z parą nieutwardzoną.
EN
The present paper is the result of the investigations of the properties and structure of nanocrystalline layers deposited from iron-based nanoalloy on steel S355N substrate by manual metal arc welding method (MMA). In the process of welding a 100 A current intensity was used with desiccation preheating at 80°C while maintaining the interpass temperature at range of 200°C. The resultant deposit welds were subjected to macro and microscopic metallographic examination, X-ray phase analyses and crystallite size was analyzed by X-ray diffractometry (XRD), additionally EDX chemical composition analysis of precipitates during scanning electron microscopy was performed. Working properties of the obtained nanocrystalline deposit welds were evaluated based on hardness and metal-to-mineral abrasive wear. The results of the deposit welds working properties measurements were compared with the properties of wear resistant steel HARDOX 400 type used as the reference material.
PL
W pracy przedstawiono wyniki badań nanokrystalicznych warstw kompozytowych miedź/nanorurki węglowe (Cu/CNTs) wytworzonych w wyniku procesu elektrokrystalizacji na podłożu ze stali węglowej S235JR. Badania obejmowały warstwy kompozytowe Cu/CNTs oraz w celach porównawczych warstwy miedziane o nanokrystalicznej strukturze, wytwarzane metodą elektrokrystalizacji. Badania fazy dyspersyjnej CNTs oraz jej identyfikację w warstwach kompozytowych realizowano za pomocą skaningowej mikroskopii elektronowej (SEM) i transmisyjnej mikroskopii elektronowej (TEM) oraz spektroskopii Ramana. Strukturę wytworzonych warstw charakteryzowano za pomocą dyfrakcji promieniowania rentgenowskiego (XRD), skaningowej mikroskopii elektronowej (SEM) i transmisyjnej mikroskopii elektronowej (TEM) oraz mikroskopii świetlnej. Wykonano pomiary chropowatości powierzchni oraz mikrotwardości sposobem Vickersa wytworzonych warstw. Elektrochemiczną metodą potencjodynamiczną badano odporność korozyjną warstw kompozytowych Cu/CNTs i miedzianych. Zrealizowane badania wykazały, że warstwa kompozytowa Cu/CNTs charakteryzuje się większym rozwinięciem powierzchni w porównaniu z warstwą Cu. Wbudowanie CNTs w osnowę nanokrystalicznej miedzi powoduje zwiększenie twardości materiału warstwy. Pomimo większej chropowatości powierzchni warstwy kompozytowe Cu/CNTs wytwarzane metodą elektrokrystalizacji wykazują większą odporność na korozję w porównaniu z nanokrystaliczną warstwą Cu.
EN
The paper presents the results of studies of nanocrystalline composite layers formed by copper/carbon nanotubes (Cu/CNTs) produced by the electrocrystalization process on a carbon steel S235JR substrate. Research has concerned composite Cu/CNTs layers and for comparative purposes a copper layer with nanocrystalline structure produced by electrocrystalization method. Studies of the disperse CNTs phase and its identification in the composite layers were carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as Raman spectroscopy. The structure of the produced layers was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and light microscopy. Measurements of surface roughness and microhardness by Vickers method of the produced layers are reported. The corrosion resistance of composite Cu/CNTs layers and copper layers were investigated by potentiodynamic electrochemical method. Accomplished studies have shown that the composite Cu/CNTs layer exhibits a greater extension of the surface when compared to the Cu layer. The built-in of CNTs into the matrix of nanocrystalline copper increases hardness of the layer material. Despite the greater roughness of the surface the composite Cu/CNTs layers prepared by the electrocrystalization method have greater corrosion resistance in comparing to nanocrystalline Cu layer.
PL
Badania przedstawione w pracy dotyczą nanokompozytowych powłok wielowarstwowych Ni/Cu oraz, w celach porównawczych, także nanokrystalicznych warstw Ni oraz Cu. Warstwy wytworzono metodą elektrokrystalizacji w wyniku reakcji redoks wymuszonej prądem elektrycznym. Do wytwarzania warstw stosowano wieloskładnikowe roztwory elektrolitów z dodatkami inhibitorów szybkości wzrostu krystalitów. Warstwy osadzano na stali węglowej S235JR metodami elektronowej mikroskopii skaningowej i transmisyjnej oraz dyfrakcji promieniowania rentgenowskiego scharakteryzowano strukturę materiału wytworzonych warstw. Przedstawiono topografię i morfologię powierzchni wytworzonych warstw oraz ich budowę na przekroju poprzecznym. Mikrotwardość materiału wytworzonych warstw określono sposobem Vickersa. Badania tribologiczne odpomości na zużycie ścierne zrealizowano w ślizgowych skojarzeniach trących w środowisku oleju, za pomocą maszyny typu Amsler-A135. Odporność na zużycie oceniono na podstawie pomiarów głębokości wytarcia oraz współczynnika tarcia. Zrealizowane badania wykazały, że materiał nanokrystalicznych warstw kompozytowych Ni/Cu, podobnie jak warstw Ni oraz Cu, wytworzonych metodą elektrokrystalizacji charakteryzuje się zwartą budową, dobrą adhezją i równomiemą grubością na całej pokrywanej powierzchni. W budowie materiału badanych warstw nie obserwuje się jakichkolwiek nieciągłości i porów, co zapewnia ich dobrą ochronę przed korozją dla materiału podłoża. Nanokrystaliczne warstwy kompozytowe Ni/Cu wykazują korzystne właściwości tribologiczne. Ustalając odpowiednie parametry procesu elektrokrystalizacji wytwarzania takich warstw na powierzchni wyrobów, można efektywnie projektować powłoki ochronne, które poprawiają ich właściwości eksploatacyjne, a zwłaszcza w środowiskach agresywnych lub przy dużych obciążeniach.
EN
The research presented in the article concerns of Ni/Cu multilayer nanocomposite coatings and, for comparison, the layers of nanocrystalline Ni and Cu. The layers were produced by the electrochemical deposition method. The multilayers were manufactured in electrolyte solutions with additives of crystallite growth rate inhibitors. The layers were deposited on carbon steel S235JR substrate. The structure of the multilayer material was characterized by scanning electron microscope and X-ray diffraction. The topography and surface morphology of the layers and their structure are reported to cross-sections. Microhardness of the material of the layers was determined by Vickers method. Tribological tests for abrasion resistance were carried out in the sliding friction associations in oil using the Amsler type machine A135. The wear resistance was assessed on the basis of measurements of the depth of abrasion and friction factor. Accomplished studies have shown that the Ni/Cu, Ni and Cu nanocrystalline composites produced by electrocrystallization process have a compact structure, good adhesion and uniform thickness over the entire coated surface. In the structure of investigated layers material have not been observed any discontinuities or pores, thus the produced layers exhibited good corrosion protection for the substrate material. Nanocrystalline composite of Ni/Cu layers exhibit favorable tribological properties. In determining the appropriate electrocrystallization process parameters producing such layers on the surface of products can be efficiently designed as protective coatings that improve their performances and especially in aggressive environments or at high loads.
PL
W niniejszej pracy analizowane są możliwości zastosowania niektórych efektów kwantowych w celu zwiększenia wydajności i stabilności cienkowarstwowych krzemowych ogniw słonecznych. Szczególnie zwraca się uwagę na nanostrukturyzację elektrody frontowej ogniwa w celu nie tylko zwiększenia ilości pułapkowanego światła ale również wykorzystania zjawiska kreacji wieloekscytonowej przez wysokoenergetyczne kwanty światła. Również podkreśla się istotą rolę zastosowania właściwych luster odbijających w tym lustra Braggowskiego. Analizowana jest metoda wytwarzania warstw nie tylko amorficznych ale także nanokrystalicznych charakteryzujących się zwiększoną absorpcją światła oraz ruchliwością nośników.
EN
In the paper application of selected quantum solutions to the thin silicon solar cell structure for enhancement of their efficiency and stability are analyzed. Nanostructurization of the front electrode may lead not only to the light confinement but also to the multiexciton creations by energetic photon. Important role plays Bragg mirror and Lambertian surface manufacture. Knowledge of silicon transition from amorphous phase to nanocrystaline phase give a possibility to create a material with the higher light absorption.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.