Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nano titanium dioxide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The mechanical properties of cement paste modified by nano-TiO2 (nT) and nano-SiO2 (nS) were experimentally studied. The compressive strength increased first and then decreased with the increase of nanoparticle content. When nanoparticles were added into the cement paste as a filler to improve the microstructure, the two kinds of particles both could form a tighter mesh structure, which would enhance the density and strength of the structure. The elastic modulus increased rapidly with the increase of the nT content and reached a peak when the nanoparticle content is about 3%, which was about twice the elastic modulus of ordinary cement paste. The Scanning electron microscopy (SEM) observation results showed that the microstructure of cement was network connection and fiber tube. The hydration progress of ordinary cement slurry was insufficient, and many unreacted cement particles remained. With the addition of nanoparticles, the internal structure of the cement became denser, with fewer pore cracks, smaller pore diameters, more complex fiber tube arrangements, and significant anisotropy, thereby improving strength and mechanical properties.
EN
The (nCo,N)-TiO2 (n = 1, 5 and 10 wt.% of Co) nanocomposites were investigated by magnetic resonance spectroscopy in 4 K to 290 K range. Analyses of ferromagnetic/electron paramagnetic resonance (FMR/EPR) spectra in terms of four Callen lineshape components revealed the existence of two types of magnetic centers, one derived from metallic cobalt nanoparticles in superparamagnetic (SPM) phase and the other from cobalt clusters in the TiO2 lattice. Additionally, at low temperature the EPR spectrum arising from Ti3+ ions was also registered. Both relaxations of the Landau-Lifshitz type and the Bloch-Bloembergen type played an important role at high temperature in determining the linewidths and the latter relaxation was prevailing at low temperature. Analysis of the integrated intensity showed that the SPM signal is due to small size FM cobalt nanoparticles while the paramagnetic signal from Co clusters originates from those nanoparticles in which the concentration of magnetic polarons is below the percolation threshold.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.