Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nadkrytyczny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Supercritical antisolvent (SAS) method is an emerging technique for particle processing of high energetic materials. The study investigates the recrystallization of high energy material HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine) using SAS method. The effect of pressure, solution flow rate, supercritical antisolvent flow rate and temperature on particle size and morphology of HMX crystals has been studied with acetone as solvent and supercritical carbon dioxide as antisolvent. Stable and desirable 𝛽- polymorphic form of HMX could be obtained under certain process conditions and has been confirmed by FTIR spectroscopy. The experimental results show that 𝛽- polymorph of HMX is of rhombohedral morphology with mean particle size of 13.7 μm, as confirmed by SEM and particle size analyzer respectively.
EN
The selection of suitable working fluid for simple and recuperative organic Rankine cycle (ORC) operating under subcritical, superheated and supercritical conditions are investigated. 11 fluids with critical temperature above 1500C are considered as potential candidates. Performance screening parameters such as net power output, thermal efficiency, turbine sizing parameter (SP) and volumetric flow ratio (VFR), exegetic parameters like irreversibility rate, fuel depletion ratio, and improvement potential rate of exergy destruction were also evaluated. Results indicate that R600a, R236fa and R1233dz(E) demonstrated the best performance for subcritical, superheated and supercritical simple ORC, respectively. R236fa and R1233dz(E) proved more suitable for subcritical/superheated and supercritical recuperative cycles, respectively. The system exegetic efficiency is reveal to be significantly higher in subcritical/superheated (61-65%) cycles compared to the supercritical (35-45%) cycle, the evaporator seen as the main source of exergy destruction, accounting for 17-37% of inlet exergy destroyed and about 8-24% in the turbine.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.