In this paper, we introduce a new condition namely: condition (W.C.C.) and utilize the same to prove a Suzuki type unique common fixed point theorem for two hybrid pairs of mappings in partial metric spaces employing the partial Hausdorff metric which generalizes several known results of the existing literature proved in metric and partial metric spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we introduce a new condition namely, ‘condition (W.C.C)’ and obtain two unique common fixed point theorems for pairs of hybrid mappings on a partial Hausdorff metric space without using any continuity and commutativity of the mappings.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let (X,d) be a metric space and T a self-map of X. Let Xn+i = f(T,Xn) denote some iterative procedure. Let {xn} be convergent to a fixed point u of T and {yn} be an arbitrary sequence in X. Set En=d[yn+i, f(T, yn)], n = 0,1,2,..., then the iterative procedure f(T,Xn) is T-stable provided that limEn = 0 implies that limnyn = u. This definition has been extended by Singh and Chadha [34] to discuss the problem of stability for multivalued operators on metric spaces. The purpose of this paper is to present a fixed point theorem for generalized multivalued contractions on a setting more general than metric spaces. The same is utilized to discuss the problem of stability of iterative procedures in multivalued analysis. Some special cases due to Stefan Czerwik and others are discussed as special cases.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.