Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multispectral analysis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W publikacji podjęto się próby odpowiedzi na pytanie o możliwość analizy składu chemicznego pióropuszy, wykorzystując ich wielospektralne zobrazowania wykonane za pomocą projektowanych dla nowej misji układów optycznych. Stosując teoretyczną analizę transmitancji warstw gazowych złożonych z H2O i CO2 oraz na podstawie przyjętego fizycznego modelu transmitancji promieniowania przez warstwę gazu widocznego na tle o ustalonej reflektancji wybrano pasmo optyczne 0,73 μm pozwalające na najlepsze rozróżnienie tych dwóch substancji. W celu walidacji otrzymanego wyniku przeprowadzono eksperyment fotografując za pomocą kamery wielospektralnej Quercus.6 strumienie gazowe złożone z obu biomarkerów na tłach o wysokiej (> 0,95) oraz niskiej (< 0,05) reflektancji w paśmie światła widzialnego i NIR. Pozyskane dane potwierdziły wynik analizy sygnatur spektralnych transmitancji obu biomarkerów. Na podstawie otrzymanego w doświadczeniu wyniku ustalono brzegowe parametry sensora i układu optycznego dla projektowanej dla orbitera kamery wielospektralnej pozwalające na oszacowanie względnej zawartości H2O i CO2 w pióropuszach fotografowanych na tle przestrzeni kosmicznej z dokładnością 2%: kanał optyczny λ = 0,730 ±0,020 μm, prędkość względna między orbiterem a księżycem v < 200 m/s, czas ekspozycji tEXP < 12 ms, iloczyn współczynnika efektywności kwantowej całego układu optycznego i względnych różnic reflektancji rejestrowanych obiektów w wybranym kanale ≥ 2,5%, wielkość pojedynczego piksela na detektorze CCD ≥ (3,75 · 3,75) μm2, głębokość studni potencjału piksela CCD ≥ 12 400 e–, zapis danych RAW co najmniej 8-bitowy. Otrzymany optymalny kanał nie był rejestrowany za pomocą stosowanych w poprzednich misjach sensorów optycznych MVIC. Stosowanie opisanej metodyki rozróżniania biomarkerów jest możliwe pod warunkiem, że jeden z czterech kanałów optycznych projektowanej kamery MAC będzie zawierać kanał 0,73 μm.
EN
The cause of the cryovolcanic activity on the Enceladus south hemisphere and related to this activity gas plumes are one of the biggest mysteries of the outer solar system moons. The possibility of the existence of the ocean under Enceladus icy outer layer was confirmed through direct chemical plumes composition measurement during Cassini close flyby 168.2 km over moon’s surface. Three out of the four main plumes components are standard biomarkers (H2O, CO2 and CH4). Physical plumes parameters variability observed also by Cassini, possibility of drawing conclusions about cryovolcanic activity reasons and biotic causes of biomarkers presence in plumes are important reasons of new, dedicated to Enceladus observation, NASA’s mission development. In this paper we are asking about possibility of Enceladus plumes chemical components analysis using multispectral imaging by projected for this new mission sensors. We chose band 0.73 μm for H2O and CO2 distinguish using theoretical transmittance gas layers analysis and physical radiation transmittance through gas layer visible on the background material with defined constant reflectance model. In order to validate this result an experiment was conducted. Using multispectral camera Quercus.6 we photographed H2O and CO2 gas layers visible on the high (> 0.95) and low (< 0.05) visible light and NIR reflectance backgrounds. The results confirmed theoretical spectral transmittance analysis of those two biomarkers. Based on this result we established boundary parameters of the sensor and optical system projected for the orbiter allowing relative content of the biomarkers estimation with precision up to 2%: optical band λ = 0.730 (± 0.020) μm, relative velocity between orbiter and moon v < 200 m/s, exposition time tEXP < 12 ms, quantum efficiency of the whole optical system and two biomarkers in selected wavelength reflectance difference product ≥ 2,5%, single CCD pixel physical size ≥ (3,75 · 3,75) μm2, potential well depth for one CCD pixel ≥ 12 400 e–, RAW data record at least 8-bit. Optimal result waveband wasn’t recorded before using MVIC optical systems during past missions. If we want to apply proposed in this paper biomarkers distinguish methodology one out of four optical channels of the MAC camera projected for the new mission should cover also selected wavelength.
EN
This article shows the limitation of the usage of dimensionality reduction methods. For this purpose three algorithms were analyzed on the real medical data. This data are multispectral images of human skin labeled as tumor or non-tumor regions. The classification of new data required the special algorithm of new data mapping that is also described in the paper. Unfortunately, the final conclusion is that this kind of local embedding algorithms should not be recommended for this kind of analysis and prediction.
EN
In this paper the methods for selecting of the most important parts of the human eyes are described. On the basis of the real 21 channel multispectral images the model of finding the lens and the spot are defined. These methods are based on the most popular algorithms of image processing. The approach to veins detection is still undefined but in the article the most important channels are pointed out and the channel difference between eyelash and the veins is also mentioned.
EN
The problem raised in this article is the selection of the most important components from multispectral images for the purpose of skin tumor tissue detection. It occured that 21 channel spectrum makes it possible to separate healthy and tumor regions almost perfectly. The disadvantage of this method is the duration of single picture acquisition because this process requires to keep the device very stable. In the paper two approaches to the problem are presented: hill climbing strategy and some ranking methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.