Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multiscale modeling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A new method of creating constitutive model of masonry is reported in this work. The model is not an explicit orthotropic elastic-plastic one, but with an artificial neural network (ANN) giving an implicit constitutive function. It relates the new state of generalised stresses Σn+1 with the old state Σn and with an increment of generalised strains ΔE (plane-stress conditions are assumed). The first step is to run a strain- controlled homogenisation, repeatedly, on a three-dimensional finite element model of a periodic cell, with elastic-plastic models (Drucker-Prager) of the components; thus a set of paths is created in (Σ, ΔE) space. From these paths, a set of patterns is formed to train the ANN. A description of how to prepare these data and a discussion on ANN training issues are presented. Finally, the procedure based on trained ANN is put into a finite-element code as a constitutive function. This enables the analysis of arbitrarily large masonry systems. The approach is verified by comparing the results of the developed model basing on ANN with a direct (single-scale) one, which showed acceptable accuracy.
PL
W pracy przedstawiono sposób tworzenia makro-modelu konstytutywnego muru ceglanego. Przyjmuje się założenia płaskiego stanu naprężenia. Tworzony model nie jest modelem ortotropowym sprężysto-plastycznym, ale jest zbudowany jako sztuczna sieć neuronowa (SSN) dająca niejawną funkcję konstytutywną. Wiąże ona nowy stan naprężeń uogólnionych (sił membranowych) Σn+1 z poprzednim stanem Σn oraz przyrostem odkształceń uogólnionych ΔE. Forma tak utworzonego makro-modelu konstytutywnego jest zgodna z analizą przyrostową problemu statyki w przypadku nieliniowości materiałowych. Składniki muru (cegła i zaprawa) są opisane modelami sprężysto-plastycznymi Druckera-Pragera. Parametry materiałowe składników muru oraz geometria komórki powtarzalnej stanowią dane wejściowe, służące budowie makro-modelu muru.
EN
Multiscale in silico modeling of the cell-tissue-organ units is an emerging area of research with the potential to improve our understanding of various disease pathogenesis. Using a multiscale modeling approach, we developed a computational model of the human cornea to investigate how the application of macroscale loads may alter the micro-mechanical environment of the cells. We then utilized the multiscale model to study the effect of physiological and non-physiological mechanical loading conditions such as intraocular pressure (IOP) loading, IOP spike, and eye-poking on the corneal cells. On comparing the results obtained under increased IOP and eye-poking loading, we observed large differences in the averaged principal stress magnitudes in the immediate vicinity of the cell through the thickness of the cornea. On the other hand, our model predicted that under physiological IOP loading, the average principal strain magnitudes in the immediate vicinity of the cell remained almost constant irrespective of the cell location in the stroma. To our knowledge, this is the first study that investigates the effect of mechanical loading on the corneal cells through a multiscale modeling framework. Our computational multiscale cornea model provides a platform to perform virtual experiments and test hypotheses to further our understanding of the potential mechanical cause of multiple diseases in the cornea.
EN
In the present work Digital Material Representation (DMR) approach was utilized to simulate the deformation behavior of the two phase Ti-6Al-4V alloy. DMR models of the two phase structure, containing different morphologies of alpha grains within a beta matrix – lamellar and equiaxed, were created. Each phase was then separated and different mechanical properties were assigned. Subsequently, their response to loading was tested using simple shear numerical simulations with special focus on strain inhomogeneities, as the main driving force for spheroidization is considered to be the formation of intense shearing within alpha lamellae. The proposed modeling approach combining Finite Element Method (FEM) with DMR allowed for much more detailed numerical analysis of deformation behavior of two phase titanium alloys at the micro scale and provided information such as strain localization and stress distributions within the alpha and beta phases. It was showed that presented model offers a new and powerful tool to study the physical bases of microstructure evolution processes such as spheroidization or recrystallization of Ti alloys. It shows good potential in simulation of deformation processes of complex two-phase morphologies that is a crucial step towards optimization of process parameters during hot forming of Ti-6Al-4V alloys.
PL
Tematem pracy jest modelowanie lokalnych zjawisk występujących w stalach TRIP w procesie ciągnienia prętów. Symulację numeryczną procesu ciągnienia w skali makro przeprowadzono za pomocą metody elementów skończonych (MES), a rzeczywistą mikrostrukturę w skali mikro zastąpiono przez Reprezentatywny Element Objętości (ang. Representative Volume Element - RVE). Początkowo struktura RVE została stworzona z wykorzystaniem algorytmów analizy obrazu oraz bazując na wynikach pracy podejmującej problem doboru parametrów obróbki cieplnej stali TRD [1]. Przedstawione podejście w połączeniu z miarami statystycznymi pozwoliło na stworzenie Statystycznie Podobnego Reprezentatywnego Elementu Objętości (ang. Statistically Similar Representative Volume Element - SSRVE) [2]. Taki element umożliwił uproszczenie reprezentacji faz w mikrostrukturze zakładając okresowe warunki brzegowe. Właściwości poszczególnych faz przyjęto na podstawie pracy [3], w której zostały one określone za pomocą badań plastometrycznych. Właściwości faz, włączając naprężenia uplastyczniające, zostały wprowadzone do SSRVE. Następnie, w celu określenia wielkości odkształcenia austenitu szczątkowego, wykonano symulacje odkształcenia elementu SSRVE dla różnych parametrów początkowych. Rozkład austenitu szczątkowego w próbce wyznaczono na podstawie relacji pomiędzy ułamkiem objętości austenitu i odkształceniem. Otrzymane wyniki zweryfikowano wykorzystując dostępne dane doświadczalne [4-6], a weryfikacja potwierdziła wiarygodność modelu wieloskalowego.
EN
Modelling of local phenomena occurring in TRIP steels during deformation in the rod drawing process was the objective of the paper. Process parameters at macro scale were calculated using finite element (FE) method. Representative Volume Elements (RVE) were attached to the flow lines in the FE program. Initial microstructure in the RVE was generated using image analysis for various parameters of heat treatment proposed in [1]. Following this, statistical methods were used to generate Statistically Similar Representative Volume Element (SSRVE) [2]. This element contains simplified representation of phases in the microstructure assuming periodic boundary conditions. Properties of phases were taken from the literature [3], where they were determined in plastometric tests. In the case of martensite it was compression on nano samples. These properties of phases including flow stress were introduced to SSRVE and simulations of deformation of this element during process were performed for various drawing parameters and deformation of the retained austenite was predicted. Accounting for relation between amount of deformation and volume fraction of the retained austenite distribution of the latter was determined. The results were confirmed with available experimental data [4-6] and good predictive capability of the multiscale model was confirmed.
PL
W pracy przedstawiono metodę modelowania wieloskalowego struktur wytworzonych z użyciem addytywnej metody Fused Deposition Modeling (FDM). Jako przykład wykorzystano model biorusztowania kości beleczkowej. Na podstawie wytworzonego modelu wzorcowego biorusztowania, zbudowano numeryczny model trójskalowy MES uwzględniający budowę struktury w skalach mikro, meso i makro. Obliczenia wieloskalowe zrealizowano z zastosowaniem metody homogenizacji numerycznej.
EN
The paper presents a method for multiscale modeling of structures manufactured using Fused Deposition Modeling (FDM) additive method, on the example of trabecular bone scaffold model. On the basis of manufactured bone scaffold reference model, the FEM numerical model of the structure was build, which takes into account the structure of scaffold at micro, meso and macro scales. Multiscale calculations were performed using numerical homogenization method.
6
Content available remote Optimization in multiscale thermoelastic problems
EN
The paper is devoted to the optimization of two-scale thermoelastic problems. The problem is solved by means of evolutionary computation and a direct analysis based on a numerical homogenization. Direct thermoelastic analysis with representative volume element (RVE) and finite element method (FEM) is taken into account. Design variables in optimization tasks describe micro-structure, whereas functionals are formulated on the basis of the quantities derived from a macro scale. Numerical examples of optimization are included.
PL
W artykule przedstawiono połączenie modelowania wieloskalowego dla układów termosprężystych oraz wielokryterialnego algorytmu ewolucyjnego. W pracy przedstawiono przykłady optymalizacji parametrów mikrostruktury porowatej, z której wykonany jest układ poddany obciążeniom termomechanicznym. Zadania polegały na optymalnym doborze kształtu pustki w mikrostrukturze modelowanej za pomocą zamkniętej krzywej NURBS. Zdefiniowano kilka funkcjonałów, zależnych od przemieszczeń i strumienia ciepła w skali makro oraz od porowatości mikrostruktury. Optymalizację wielokryterialną przeprowadzono dla wybranych par funkcjonałów z użyciem opracowanego algorytmu MOOPTIM.
7
Content available remote Trabecular bone numerical homogenization with the use of buffer zone
EN
The paper is devoted to calculation of effective orthotropic material parameters for trabecular bone tissue. The finite element method (FEM) numerical model of bone sample was created on the basis of microcomputed tomography (µCT) data. The buffer zone surrounding the tissue was created to apply the periodic boundary conditions. Numerical homogenization algorithm was implemented in FEM software and used to calculate the elasticity matrix coefficients of the considered bone sample.
EN
Deterioration in structures starts from meso-scale defects on vulnerable joints where damage evolution becomes main reason of fatigue accumulation. Therefore analyses on structural failure induced by fatigue accumulation must be carried out in multi-scale. This paper is aimed to provide a multi-scale computational approach for structural failure analyses. Scale coupling method based on numerical integrated constraint equations is developed. This scale coupling method can guarantee sufficient computing precision when material at the trans-scale boundary keep elastic. However in structural deterioration process, material nonlinearities can evolve to the trans-scale boundary, thus make this scale coupling method invalid. A methodological strategy considering adaptive trans-scale boundary is proposed to deal with the extension of local nonlinear response during analyses. With application of the multi-scale modeling and computation strategy developed in this paper, failure processes of a beam component with defect and a longitudinal stiffening truss are analyzed. Results show that, damage evolution has acceleration effect on macroscopic deterioration of structure property, and localization phenomenon of damage evolution is obvious. Comparison of failure route of upper and bottom joints of the truss shows different deterioration process.
PL
Rozpatrywane stopy Mg zostały opracowane w celu wytworzenia resorbowalnych bio implantów. Ich skład chemiczny cechuje się dodatkami takimi jak Ca i Li (MgCa0,8, A×30, LA63). Te dodatki zwiększają biozgodność stopu, optymalizują intensywność korozji, ale obniżają technologiczną plastyczność przy przeróbce plastycznej [1, 2]. Technologia produkcji nici chirurgicznych zawiera etapy wyciskania półwyrobu, ciągnienia w podgrzewanych ciągadłach oraz przewiduje ciągnienie na zimno w celu kształtowania odpowiedniej jakości powierzchni i własności. Problem stanowi jednak niska plastyczność rozpatrywanych stopów w temperaturze pokojowej, co utrudnia ostatni etap cyklu produkcyjnego [3]. Celem pracy jest opracowanie numerycznego modelu ciągnienia na zimno niskoplastycznych stopów magnezu z uwzględnieniem mechanizmu utraty spójności w skali mezo i wykorzystanie go do optymalizacji technologicznych parametrów procesu. Model utraty spójności opracowano za pomocą metody elementów brzegowych. Model został skalibrowany za pomocą badań in situ. Walidacja wykonana została na podstawie porównania mikrostruktury i powstających defektów w drucie z wynikami symulacji.
EN
Magnesium alloys with high biocompatibility containing Ca, Li and rare earths are the alternative for nowadays used materials for implants and surgical threads. The main advantage of those alloys are properties similar to properties of human bones. However the low ductility in cold deformation of this alloys is a problem [1-3]. In the case of production of surgical threads the high temperature causes an oxidation of the surface, but cold deformation is very difficult because of the low plasticity. In work [4] the technology of thin surgical threads production from magnesium alloys is proposed. The described technology contains: extrusion to diameter 1 mm, hot drawing to diameter 0.1-0.2 mm and cold drawing to diameter 0.1-0.05 mm to improve the surface quality. The last stage of presented technology requires the development of the mathematical model of the process, because identification of the parameters is very difficult for materials with such low plasticity. Furthermore, the experimental research proved, that the model in the macro scale is not adequate [5, 6]. The developed model in macro scale use the finite element method, and the model in meso scale use the boundary element method and considers the microstructure mechanisms: intergranular fracture mechanism, grain orientation and the effect of micro cracks on the plasticity restoring during annealing. The macro and meso models are coupled and finally the multiscale model is obtained.
EN
The problem of determination the drawing schedule of the cold drawing of thin (less than 0.1 mm) wire from the hardly deformable magnesium alloy Ax30 with the aid of the multi-scale mathematical model is examined in the paper. The special feature of the alloy Ax30 is the mechanism of fracture on the grain boundaries. It is experimentally proven that the microscopic cracks during the tension tests occurs long before the complete fracture of samples. The state of metal, which directly precedes the appearance of these microscopic cracks, is proposed to consider it as optimum from the point of view of the restoration of plasticity with the aid of the annealing. The simulation of this state in the wire drawing process and development on this basis regimes of wire drawing is the purpose of paper. Solution of problem required the development of the fracture model of alloy in the micro scale, identification of the fracture model and its implementation into the FEM model of wire drawing. Two schedules of wire drawing are examined. The first of them is according to the results of simulation allowed the appearance of microscopic cracks. The second regime was designed so that the microscopic cracks would not appear during wire drawing. Experimental verification is executed in laboratory conditions on the specially developed device. The annealing was carried out before each passage. The initial diameter of billet was 0.1 mm. In the first regime it was possible to realize only 2-3 passages, after which the fracture of wire occurred. The cracks on the grain boundaries were observed in this case on the surface of wire. The second regime made it possible to carry out 7 passages without the fracture, the obtained wire with a diameter of 0.075 mm did not contain surface defects, it had high plastic characteristics and allowed further wire drawing. Thus, the validation of the developed multi-scale model is executed for two principally different conditions of deformation.
PL
Praca poświęcona jest opracowaniu procesu ciągnienia na zimno cienkich (o średnicy mniejszej niż 0,1mm) drutów z trudno odkształcalnego biozgodnego stopu magnezu Ax30 przy wykorzystaniu wieloskalowego modelu numerycznego. Cechą charakterystyczną stopu Ax30 jest mechanizm pękania po granicach ziaren. Udowodniono eksperymentalnie, że mikropęknięcia w trakcie próby rozciągania pojawiają się na długo przed pęknięciem próbki w skali makro. Stan metalu, który bezpośrednio poprzedza pojawienie się mikropęknięć, jest uznany za optymalny pod względem możliwości odzyskania plastyczności za pomocą wyżarzania. Głównymi celami pracy są symulacja takiego stanu materiału oraz opracowanie procesu ciągnienia na tej podstawie. Rozwiązanie przedstawionego problemu wymaga opracowania modelu pękania stopu w skali mikro, identyfikacji parametrów pękania oraz implementacji modelu w skali mikro do modelu MES procesu ciągnienia. Dwa przypadki procesu ciągnienia zostały zbadane. Pierwszy z nich, zgodnie z wynikami obliczeń, prowadzi do powstania mikro pęknięć. Drugi rozpatrywany schemat ciągnienia został dobrany tak, by nie pojawiły się mikropęknięcia w ciągnionym drucie. Eksperymentalna weryfikacja wyników obliczeń została przeprowadzona w warunkach laboratoryjnych w specjalnie do tego celu opracowanym narzędziu. Wyżarzanie było wykonywane przed każdym przepustem. Początkowa średnica drutu wynosiła 0,1 mm. W pierwszym przypadku możliwe było przeprowadzenie 2-3 przepustów, po których w materiale wystąpiły pęknięcia. W tym przypadku pęknięcia po granicach ziaren były obserwowane na powierzchni drutu. Drugi rozważany schemat ciągnienia pozwolił na przeprowadzenie 7 przepustów bez pojawienia się pęknięć, otrzymano drut o średnicy 0,075 mm bez defektów na powierzchni o plastyczności pozwalającej na dalsze ciągnienie. Tak więc, przeprowadzono walidację modelu na dwóch zasadniczo różnych przypadkach procesu ciągnienia.
11
EN
The paper presents the spectrum of methods and results for design of structures, which are frequently applied in numerical simulations of properties and processes taking place in cellular materials. The methods described here are universal for many applications at various length-scales. They can be efficiently applied for complex cellular structures such as polycrystals or foams, where the elements (grains or pores) are distributed and shaped in a controlled way. The digital material representations created by these methods can be used for a number of numerical techniques such as: Molecular dynamics (MD), Monte Carlo (MC), Cellular Automaton (CA), Finite Element Method (FEM) or Finite Volume Method (FVM). The examples of structures consisting of atoms, fields or finite elements are presented in this paper. The applications of such structures are demonstrated by the properties and processes relevant to the specific length scales.
PL
W artykule przedstawiono metody oraz wyniki projektowania struktur, które są stosowane do numerycznej symulacji własności i procesów występujących w materiałach komórkowych. Zaprezentowane metody mają charakter uniwersalny dla zastosowań w różnych skalach wymiarowych. Mogą być stosowane do takich materiałów jak polikryształy lub pianki, w których elementy (ziarna lub pustki) są rozłożone i ukształtowane w sposób kontrolowany. Cyfrowe reprezentacje materiału utworzone za pomocą zaproponowanych w pracy rozwiązań mogą stanowić podstawę dla takich numerycznych metod jak Dynamika Molekularna (ang. Molecular Dynamics - MD), Monte Carlo (MC), Automaty Komórkowe (ang. Cellular Automaton -CA), Metoda elementów Skończonych (ang. Finite Element Method - FEM) lub Metoda Objętości Skończonych (ang. Finite Volume Method - FVM). W artykule zaprezentowano przykłady struktur składających się z atomów, pól lub elementów skończonych. Przedstawiono również zastosowania tych struktur do opisu własności i procesów charakterystycznych dla różnych skal wymiarowych.
12
Content available remote Identification in multiscale thermoelastic problems
EN
The paper deals with the identification in multiscale analysis of structures under thermal and mechanical loads. A two-scale model of porous materials is examined. Direct thermoelastic analyses with representative volume element (RVE) and finite element method (FEM) are taken into account. Identification of material constants of the microstructure and identification of the shape of the voids in the microstructure are considered. Identification functional is formulated on the basis of information obtained from measurements in mechanical and thermal fields. Evolutionary algorithm is used for the identification as the optimization technique. Numerical examples of identification for porous aluminum models are enclosed.
EN
The thixotropy phenomenon is strongly connected with the change of viscosity in time, while the of Navier-Stockes equation. The micro- and macroscale models are coupled using CAFE approach.
PL
Zjawisko tiksotropii polega na zmianie lepkości cieczy przy ustalonej prędkości ścinania i temperaturze. W komputerowym modelowaniu zachowania się materiału wykazującego skończonych.
EN
The paper presents multiscale simulations of the crash box, which is being widely used in automotive industry, because of its high influence on improvement of passengers safety. The multiscale simulations are presented with application of statistically similar representative volume element (SSRVE), which besides offering the reliability of conventional representative volume element (RVE), gives much shorter computational time. At first, the idea of SSRVE with examples obtained for HCT600 steel, used for crash box production, is presented. Then macroscale model of crash box is described in details, as well as the results obtained for macroscale simulations. Finally, the introduction of SSRVE into the multiscale simulations is shown. The results for the created multiscale approach prove that the proposed solution offers the possibility of better estimation of final product properties on the basis of microstructural information and that it can be efficiently used in industrial conditions.
PL
W pracy przedstawione jest zastosowanie automatów komórkowych do opisu procesów inicjacji i rozwoju uszkodzeń, zachodzących w materiałach polikrystalicznych na poziomie mikroskopowym. Wyróżnione zostały procesy zachodzące zarówno na granicach ziaren (zniszczenie międzykrystaliczne) jak i w samych ziarnach (zniszczenie transkrystaliczne), typowe dla zniszczenie metali w warunkach pełzania. W obu przypadkach uwzględniono możliwość wystąpienia mechanizmów formowania się pustek i wystąpienia poślizgów - w ujęciu probabilistycznym.
EN
The application of cellular automata for description of initiation and propagation of damage development is presented. The mechanisms responsible for transgranular and intergranular fracture are modeled. The behavior of material point is simulated by cellular automata rules for Representative Volume Element (RVE) whereas the structure deformation is calculated through Finite Element Analysis leading to the CAFE methodology.
EN
The thixotropy phenomenon is strongly connected with the change of viscosity in time, while the shear rate and temperature are constant. One of the most important challenges in computer modeling of the materials that show such behavior is the proper description of microstructure development. The changes of microstructure during thixoforming processes are crucial to material properties, such as viscosity. Due to different scales of the models, the simultaneous modeling of microstructure development and viscosity property is still difficult. Therefore, the application of multiscale methods may provide the solution of the discussed problem. In this paper the multiscale model is proposed. The cellular automaton (CA) technique is used as microscale model. The main advantage of CA is ability to modeling of global behavior of the system on the basis of local interactions. In this paper the CA technique was applied for modeling of viscosity change and microstructural behavior of thixoformed material. The macroscale model is based on FEM solution of Navier-Stockes equation. The micro- and macroscale models are coupled using CAFE approach.
PL
Zjawisko tiksotropii polega na zmianie lepkości cieczy przy ustalonej prędkości ścinania i temperaturze. W komputerowym modelowaniu zachowania się materiału wykazującego właściwości tiksotropowe (w tym stopów wykorzystywanych w procesach tiksoformingu), jednym z ważniejszych zagadnień jest poprawne opisanie zmian mikrostruktury w czasie. Zmiany te w sposób krytyczny oddziałują na własności makroskopowe materiału w tym przede wszystkim lepkość. Równoczesne modelowanie zmian mikrostruktury i efektów makroskopowych jest utrudnione przede wszystkim ze wzgledu na różnice skal obu tych procesów. Rozwiązaniem tych trudności może być zastosowanie metod modelowania wieloskalowgo. W rozważanym przypadku modelowanie przeprowadzono bazując na połączenia układów równań różniczkowych cząstkowych oraz rozwiązań w skali mikro, wykorzystujących automaty komórkowe. Podstawową zaletą automatów komórkowych jest wykorzystywanie zależności lokalnych do modelowania globalnego zachowania systemu.
EN
A study of the possibilities given by the multi scale CAFE method for the parallel modeling of the microshear and shear band propagation in steels during deformation is presented in this work. The developed model is based on the idea of multi scale CAFE approach developed at Sheffield University in England, and used for the Charpy test modeling. Modeling of the microshear bands development in microscale, shear bands development in mezoscale and material response based on those processes in macroscopic scale is possible using this multi scale computational technique. The models composing space of cells, definition of neighborhood and definition of transition rules for two problems, crack initiation in the deformed materials and development of micro shear bands, is described in the paper. Both models are implemented into the finite element code. The results of simulations of Charpy tests and compression in channel dies are presented.
PL
Niniejsza praca stanowi wstęp do badań nad możliwościami zastosowania metody CAFE do modelowania zjawiska powstawania i propagacji pasm ścinania w odkształcanym materiale. Opracowywany model bazuje na metodologii wieloskalowej analizy CAFE opracowanej w przeciągu ostatnich czterech lat na Uniwersytecie Sheffield w Wielkiej Brytanii i z powodzeniem zastosowanej do modelowania testu Charpy’iego. Poprzez zastosowanie tej metody możliwe jest jednoczesne modelowanie zjawisk zachodzacych w mikroskali — powstawanie mikropasm ścinania, mezoskali – rozwój makropasm ścinania, oraz makroskali — odpowiedź materiału na powyższe zjawiska. W pracy przedstawiono opis modelu obejmujący przestrzenie komórek oraz definicje sąsiedztwa i reguł przejścia dla dwóch zagadnień, propagacji pęknięć w materiałach odkształcanych oraz rozwoju mikropasm ścinania. Obydwa modele zostały połączone z programem z metody elementów skończonych. W pracy przedstawiono wyniki symulacji próby Charpy’ego oraz plastometrycznej próby kanalikowej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.