Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multiscale model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Ultrafine-grained structure was produced in the Accumulative Angular Drawing(AAD) process in which the complex strain path was applied. The microalloyed steel wire rods were produced using multi-pass wire drawing process where the high strain accumulation is used as a way to achieve much higher microstructure refinement level compared to the conventional wire drawing (WD) process. The wires after both AAD process and WD process were examined in order to assess mechanical properties and microstructure development. In order to evaluate the effects of complex deformation on microstructure development and mechanical properties of the drawn wires, a numerical model of the torsion tests were conducted using Abaqus software. The cyclic torsion tests were performed to study the effects of the applied hardening rule - described as a function of dislocations density and the accuracy of the prediction of material behaviour subjected to strain path change during AAD. It has been shown that an additional advantage of presented approach is its capability of tracking evolution of dislocation density during the deformation process. The initial dislocation densities used in the performed calculations were taken from the microstructural analysis using high resolution EBSD. During strain reversal, annihilation of the dislocations (Bauschinger effect) is a common phenomenon that leads to the decrease in dislocation density and affects the final strength. Finally, based on the proposed constitutive description, multiscale finite element modelling combined with Digital Material Representation (DMR) was used as a tool for prediction of the deformation and microstructure inhomogeneity in the drawn wires.
PL
W pracy przedstawiono badania wpływu złożonej ścieżki odkształcenia na rozdrobnienie mikrostruktury w drutach poddanych procesowi Kątowego Wielostopniowego Ciągnienia (AAD Accumulative Angular Drawing). Druty ze stali mikrostopowej zostały poddane procesowi wielostopniowego ciągnienia, w którym niejednorodna, silna akumulacja odkształcenia powoduje wystąpienie efektów rekrystalizacji in situ, co z kolei powoduje lokalny wzrost stopnia rozdrobnienia mikrostrutury w porównaniu z konwencjonalnym procesem ciągnienia (WD Wire Drawing). Druty wytworzone w procesach AAD oraz WD zostały poddane badaniom porównawczym własności mechanicznych oraz analizie mikrostrukturalnej. W celu zapewnienia poprawnej oceny wpływu złożonej ścieżki odkształcenia na rozwój mikrostruktury i własności mechaniczne w ciągnionych drutach, zastosowano symulacje numeryczne z wykorzystaniem komercyjnego pakietu Abaqus oraz modeli procesu skręcania. Symulacje procesu cyklicznego skręcania wykonano w celu oceny zdolności proponowanego modelu umocnienia odkształceniowego, opartego na zmianach gęstości dyslokacji, do symulacji zmiennej ścieżki odkształcenia podczas procesu AAD. Dodatkową zaletą zaproponowanego podejścia jest możliwość śledzenia rozwoju gęstości dyslokacji podczas procesu odkształcania. Początkowa gęstość dyslokacji wykorzystana w obliczeniach wyznaczona została z analizy mikrostrukturalnej z wykorzystaniem wysokorozdzielczej techniki EBSD. Podczas zmiany kierunku odkształcenia, proces anihilacji dyslokacji (efekt Bauschingera) jest częstym zjawiskiem prowadzącym do spadku gęstości dyslokacji, a w konsekwencji do obniżenia umocnienia odkształceniowego. W celu wyznaczenia niejednorodności mikrostrukturalnej oraz niejednorodności odkształcenia w drutach po procesie ciągnienia, zastosowano modelowanie wielkoskalowe w połączeniu z cyfrową reprezentacją obrazu (DMR).
EN
A multiscale model for simulating the hydrodynamic behavior of catalytic bale packings has been proposed. This model combines computational fluid dynamics (CFD) and macroscopic calculation. At small scale calculation, the CFD model includes 3-D volume-of-fluid (VOF) simulation within representative elementary unit (REU) under unsteady-state conditions. The REU constitutes gauze and catalyst domain, and porous media model is applied. At large scale calculation, a new mechanistic model deduced from the unit network model is employed. Based on liquid split proportion from small scale calculation, liquid distribution of the entire bale packing can be predicted. To evaluate different packing design, three common bale arrangements, i.e. one-bale, nine-bales and seven-bales, are compared. The area-weighted Christiansen uniformity coefficient is introduced to assess the distribution performance. A comparison between simulation and experimental results is made to validate the multiscale model. The present methodology is proved to be effective to analysis and design of catalytic distillation columns.
EN
Analysis of the quality of obtained results from a 3D multiscale concurrent finite element numerical model based on Digital Material Representation (DMR) concept is the main aim of the research. Particular attention is put on an influence of different number of data transfer nodes between subsequent scales on material behavior predicted by a micro DMR model. Conclusions are drawn based on results in the form of equivalent strain distribution, homogenized stress-strain curves and samples shape changes.
PL
Celem pracy jest analiza jakości uzyskanych wyników podczas stosowania współbieżnego trójwymiarowego modelu wieloskalowego, bazującego na kombinacji modeli elementów skończonych w skali makro i mikro. Szczególną uwagę poświecono wpływowi zróżnicowanej ilości węzłów przekazujących dane między skalami mikro i makro na zachowanie się materiału w skali mikro. Wyniki przedstawiono w formie rozkładu odkształceń, krzywej płynięcia materiału i zmian w kształtach próbek w skali mikro.
EN
Development of modelling method, which allows prediction of the properties distribution in the metal volume with the behavioural features of the microstructure under the influence of the deformation during drawing, was the objective of the paper. Multiscale model of rod drawing process was proposed. To save computing time, statistical representation of the microstructure was applied. Statistically Similar Representative Volume Element (SSRVE), representing ferritic-pearlitic steel microstructure, was developed. Simulations of the drawing process were performed and local deformation of each structural component was predicted. Selected results, as well as discussion of the effect of microstructure on obtained stress and strain distributions, are presented in the paper.
PL
Celem pracy jest rozwój metod modelowania, które pozwalają przewidywać rozkład własności w objętości wyrobu gotowego uzyskiwanego na drodze przeróbki plastycznej. Metody te uwzględniają cechy mikrostruktury w warunkach odkształcenia. Jako przykład rozważono proces ciągnienia prętów. Zaproponowany został wieloskalowy model dla tego procesu. W celu obniżenia czasu obliczeń wprowadzono statystyczną reprezentację mikrostruktury. Opracowany został statystycznie podobny reprezentatywny element objętości (ang. Statistically Similar Representative Volume Element - SSRVE), reprezentujący strukturę ferrytyczno-perlityczną. Przeprowadzono symulacje procesu ciągnienia prętów i wyznaczono odkształcenie każdej fazy w mikrostrukturze. W artykule przedstawiono wybrane wyniki symulacji i przeprowadzono dyskusję uzyskanych rozkładów odkształceń i naprężeń w prętach.
5
Content available remote Quantum Dynamics for Ion Channel Transport, Poisson-Schrödinger Modell
EN
This paper deals with the mathematical model of the ion permeation in potassium channels of biomembrane. Based on the Hamiltons, variational principle was led out to the set of compiling equations describing quantum dynamics of the potassium ion transport; Poisson-Schrodinger equation for electric potential ϕ(r, t), and Schrodinger equation for wave function ψ(r, t). Received the set of equations was formulated in the form of two variational identities. A numerical algorithm of the solution, was proposed, based on the meshles Galerkin approximation.
PL
W pracy przedstawiono model matematyczny przepływu jonow sodu, potasu w kanałach biomembrany komórki żywej. Podano kryterium funkcji działania Lagrange’a dla kompatybilnosci kwantowego opisu układu. W oparciu o zasadę najmniejszego działania Hamiltona, wyprowadzono sprzężony układ równan opisujący dynamikę transportu jonów; równanie Poissona dla potencjału elektrycznego ϕ(r, t) oraz równanie Shrodingera dla funkcji falowej ψ(r, t). Otrzymany układ równań sformułowano w postaci dwóch tożsamości wariacyjnych Galerkina. Zaproponowano algorytm numeryczny rozwiązania otrzymanych równań oparty o metodę bez siatkowej aproksymacji Galerkina.
EN
The main goal of this paper is an analysis of a quality of obtained results from a multiscale, concurrent modeling based on combination of macro and micro finite element models. Particular attention is put on an influence of different number of data transfer nodes between micro and macro scales on a material behavior predicted by a micro model. Results in form of equivalent strain distribution, homogenized stress-strain curves and samples shape changes are presented and discussed.
PL
Celem pracy jest określenie jakości uzyskanych wyników podczas stosowania współbieżnego modelu wieloskalowego, bazującego na kombinacji modeli elementów skończonych w skali makro i mikro. Szczególną uwagę poświęcono wpływowi zróżnicowanej ilości węzłów przekazujących dane między skalami mikro i makro na zachowanie się materiału w skali mikro. Wyniki przedstawiono w formie rozkładu odkształceń, krzywej płynięcia materiału i zmian w kształtach próbek w skali mikro.
7
Content available remote Multiscale FEM model of artificial heart chamber composed of nanocoatings
EN
The purpose of the present work was to construct the multiscale FEM model of artificial heart chamber composed of nanocoatings. This goal is reached by the development of the FEM macromodel of artificial blood chamber using the commercial code and by the creation of the micromodel based on our own FEM code. The latter uses strain state obtained after loading in macromodel. The loci of failure initiation in the material of chamber were precisely determined and these results are used as an input data for the new micromodel.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.