Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multipurpose aircraft
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Lotnicze silniki turbinowe o sile ciągu większej od 27,6 kN podlegają normom emisji związków szkodliwych spalin zgodnie z Aneksem 16 Konwencji Chicagowskiej ustalonymi przez ICAO. Normy emisji silników odrzutowych określone są wg przyjętego jako wzorcowy - cyklu startu i lądowania LTO (ang. Landing and take-off cycle). Normy te stosuje się również dla silników wykorzystywanych w wojskowych samolotach wielozadaniowych. Jednak eksploatacja samolotów wielozadaniowych różni się od eksploatacji cywilnych statków powietrznych. W związku z tym przeprowadzono analizę wyników emisji zanieczyszczeń uzyskanych w przeprowadzonych testach badawczych z wartościami emisji wynikających z wytycznych zawartych w normach.
EN
Aviation gas turbines with thrust greater than 27.6 kN are subject to exhaust emission norms and regulations for harmful compounds outlined in Annex 16 of the Chicago Convention as established by ICAO. Jet engine emission standards are defined with the use of an established takeoff and landing model known as the LTO cycle (Landing and take-off). These standards also apply to engines used in multi-role combat aircraft. However, multi-role combat aircraft operation differs from the operation of civilian aircraft. Therefore, the analysis of the emission results obtained in the carried out research was done with the use of emission values contained in the norm guidelines.
EN
The problem described in the paper concerns the choice strategy of so-called design point of the flow engine in a multi-role aircraft at the initial stage of aircraft and engine design as the aviation system. The design point is defined by the height and speed of flight and engine parameters of heat flow which allows in particular to determine the mass and dimensions of the engine. The following analysis represents an attempt to seek other than the classic (based on a maximum within unitary thrust, specific fuel consumption) criteria for calculation point for the multi-role aircraft. Multipurpose aircraft, during every mission, very often must perform many tasks and at the same time must use the energy source for the maneuvers. The mathematical model of the chosen tasks of an aircraft has been presented, which due to the energetic requirements do not allow to build the uniform optimization criteria. The models of such flight stages have been presented: take off, climbing with the maximum velocity and the maximum angle of climb, horizontal flight both sub-and supersonic, turn determined. In order to make the considerations easier the engine model was reduced to two parameters: non-dimensional loading coefficient and the coefficient of relative engine measure. During the conducted calculations the values of the non-dimensional coefficients were determined allowing to optimize the tasks performed by the aircraft during the mission. By making comparisons of the determined characteristics the acceptable values of the non-dimensional engine coefficients were shown and the assessment criteria of the aircraft manoeuvre properties vital for the realization of the entirety of its mission were presented.
PL
Samolot wielozadaniowy, wykonując cały szereg różnorodnych zadań, niejednokrotnie w czasie jednej misji, musi wykorzystywać zasoby energetyczne dla uzyskania wymaganej sytuacją manewrowości. Przedstawiono model matematyczny wybranych zadań samolotu, które z racji wymagań energetycznych i ekonomicznych uniemożliwiają zbudowanie jednolitych kryteriów optymalizacji. Przedstawiono modele takich etapów lotu jak: start, wznoszenie z maksymalna prędkością i maksymalnym katem wznoszenia, lot poziomy pod- i naddźwiękowy, zakręt ustalony. Dla uproszczenia rozważań model silnika sprowadzono do dwóch parametrów: bezwymiarowego współczynnika obciążenia (który zawiera w sobie parametry cyklu roboczego silnika jak temperaturę przed turbiną, spręż całkowity silnika) oraz wskaźnik względnego wymiaru silnika. W trakcie przeprowadzonych obliczeń wyznaczono wartości wskaźników bezwymiarowych pozwalających optymalizować poszczególne zadania wykonywane przez samolot w trakcie misji. Dokonując porównania wyznaczonych charakterystyk wskazano dopuszczalne wartości wskaźników bezwymiarowych silnika i wskazano te kryteria oceny własności manewrowych samolotu, które są istotne dla realizacji całej jego misji.
EN
Multipurpose aircraft, during one mission, very often must perform many tasks and at the same time must use the energy sources for the maneuvers. The mathematical model of the chosen tasks of an aircraft has been presented, which due to the energetic and economical requirements do not allow to build the uniform optimization criteria. The models of such flight stages have been presented: take off, climbing with the maximum velocity and the maximum angle of climb, horizontal flight both sub-and supersonic, turn determined. In order to make the considerations easier the engine model was reduced to two parameters: non-dimensional loading coefficient and the coefficient of relative engine measure. During the conducted calculations the values of the non-dimensional coefficients were determined which allow to optimize the tasks performed by the aircraft during the mission. By making comparisons of the determined characteristics there were shown the acceptable values of the non-dimensional engine coefficients and there were presented the assessment criteria of the aircraft maneuver properties which are important for the realization of the whole its mission.
EN
In the article there was presented a quality assessment of parameters selection of bypass turbine engine for a multipurpose aircraft. It was assumed that the assessment criterion results from the energy-consumption of a flight. The criteria of energy-consumption range were defined as the relation of sum ofenergy supplied to the aircraft on the driven stages to the distance during a mission. The second criterion of unitary energy-consumption is defined as the relation of the movement energy-consumption to the product of the aircraft mass and the route during the elementary stage of the flight. With the use of the already worked out models of the power unit (bypass turbine engine with jet mixer and afterburner) of an aircraft (already known mass and aerodynamic characteristics) there were determined the ranges of thrust which are indispensable for a flight and available for the engine at each stage of the mission: take off, climb, subsonic and supersonic flight and turn with different overload factor. On the example of three chosen aircraft missions (Lo-Lo-Lo, Hi-Lo-Hi and Hi-Hi-Hi) the models of mission energy-consumption were developed. For the accepted change ranges of the comparative cycle parameters of the turbine engine the run of energy-consumption was tested. It was stated that for the assumed data the most energy-consuming mission is Lo-Lo-Lo, wherefore the increase of the compression and the rate of bypass reduces the energy-consumption of the mission.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.