For a higher classification accuracy of disturbance signals of power quality, a disturbance classification method for power quality based on gram angle field and multiple transfer learning is proposed in this paper. Firstly, the one-dimensional disturbance signal of power quality is transformed into a Gramian angular field (GAF) coded image by using the gram angle field, and then three ResNet networks are constructed. The disturbance signals with representative signal-to-noise ratios of 0 dB, 20 dB and 40 dB are selected as the input of the sub-model to train the three sub-models, respectively. During this period, the training weights of the sub-models are transferred in turn by using the method of multiple transfer learning. The pre-training weight of the latter model is inherited from the training weight of the previous model, and the weight processing methods of partial freezing and partial fine-tuning are adopted to ensure the optimal training effect of the model. Finally, the features of the three sub-models are fused to train the classifier with a full connection layer, and a disturbance classification model for power quality is obtained. The simulation results show that the method has higher classification accuracy and better anti-noise performance, and the proposed model has good robustness and generalization.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.