Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multidisciplinary design
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Design of a turbulent wing for small aircraft using multidisciplinary optimisation
EN
Design process of a turbulent wing for small aircraft, using multidisciplinary and multi-objective optimisation, based on a genetic algorithm was presented. A generic parametric model of small aircraft wing geometry was developed. In the model, a wide class of wing geometries, with and without high lift devices, was described by a relatively small number of parameters. The optimisation method used the objectives and constraints typical for multidisciplinary wing design, and was applied to the design and optimisation of turbulent wing dedicated for small, two-propeller aircraft. The research was conducted within European Project CESAR. The results of the research have been discussed.
EN
A scheme has been developed to be utilized for solving the interaction between wing aerodynamic loads and the flexibility of wing structures under a quasi static assumption. The interaction is implemented through a link between the nodes of finite element model and the grids of transonic small disturbance model. The particular finite element responses, namely translational displacement vectors (TDV), are utilised for reconstructing the deflected wing surfaces. So in each iteration, the updated surfaces are involved as the parent for regenerating the TSD grids. The criteria of the Euclidean norm is applied for evaluating the convergency of aero-structure interaction. Catia-V5, is fully employed to manage three dimensional geometries for developing the model of wing structures, calculating grids and aerodynamic loads, as well as for reconstructing the updated wing surfaces. Numerous functions and objects of Catia are employed by conducting particular accesses via component object models using Microsoft Visual Basic.Net. A case study is excersized to demonstrate the interaction in transonic speed. The results shown that the scheme is very good in the way performing the interaction in quasi static condition. The utilization of TDV for generating the deflected wing surfaces indicates the capability of high fidelity deformations with respect to the complexity of finite element model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.