In this contribution, we present a method for obtaining literature books recommendations using collaborative filtering recommender system technique and emotions extracted from multi-source online reviews. We experimentally validated the proposed system using a book dataset and associated reviews that we collected from Goodreads and Amazon websites using our customized web scrapers. We show the benefits of using multi-source reviews by proposing a series of recommender system evaluation measures, which include single-source and multi-source recommendations similarity, recommendation algorithm usecases coverage and generated recommendations relevance.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.