Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multi-seed
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
In this paper, the automatic segmentation of multispectral magnetic resonance image of the brain is posed as a clustering problem in the intensity space. Thereafter an automatic clustering technique is proposed to solve this problem. The proposed real-coded variable string length genetic clustering technique (MCVGAPS clustering) is able to evolve the number of clusters present in the data set automatically. Each cluster is divided into several small hyperspherical subclusters and the centers of all these small sub-clusters are encoded in a string to represent the whole clustering. For assigning points to different clusters, these local sub-clusters are considered individually. For the purpose of objective function evaluation, these sub-clusters are merged appropriately to form a variable number of global clusters. A recently developed point symmetry distance based cluster validity index, Sym-index, is optimized to automatically evolve the appropriate number of clusters present in an MR brain image. The proposed method is applied on several simulated T1-weighted, T2- weighted and proton density normal and MS lesion magnetic resonance brain images. Superiority of the proposed method over Fuzzy C-means, Expectation Maximization clustering algorithms are demonstrated quantitatively. The automatic segmentation obtained by multiseed based multiobjective clustering technique (MCVGAPS) is also compared with the available ground truth information.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.