Gas-filled multi-pass cell (MPC) has been widely used in physics and optics studies. An important issue that cannot be ignored is the instability of beam propagation, which will destroy the optical elements and weaken the experimental performance. In this paper, the authors propose a theoretical investigation of MPC, not only the analytical solution of the eigenmode, but also the beam evolution in gas-filled MPC. Based on the symmetrical configuration of MPC, the model is established using the ABCD matrix method and the beam transmission evolution in MPC. The analytical eigenmode solution is derived by solving the functions of q-parameter transformation. The beam size and wavefront radius verify the correctness of the eigenmode. Then, the transfer matrix calculates the beam evolution of 100 passes in MPC. Compared to the traditional eigenmode calculation, the method proposed in this paper has higher stability. Starting from a theoretical perspective, this paper addresses the issue of an unstable beam transmission in MPC, which is significant for designing and evaluating MPC configuration in frontier scientific research.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.