Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mountain waves
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, a feasibility of anelastic approach for numerical weather prediction (NWP) is examined. The study concerns the anelastic nonhydrostatic model EULAG as a prospective candidate for the new dynamical core of a high-resolution NWP model. Such an application requires a series of benchmark tests to be performed. The study presents the results of dry idealized two-dimensional linear and non-linear tests. They include evolution of cold and warm density currents in neutrally stratified atmosphere, inertia-gravity waves in short and long channels, as well as mountain gravity waves for a set of different flow regimes. Detailed comparison of the results with the reference solutions, based mainly on the results of compressible models, indicates a high level of conformity for all of the experiments. It verifies the anelastic approach as strongly consistent with the compressible one for a broad class of atmospheric problems. It also corroborates the robustness of EULAG numerics, an essential requirement of dynamical core of NWP model.
EN
A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-147)].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.