Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 324

Liczba wyników na stronie
first rewind previous Strona / 17 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  moulding sand
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 17 next fast forward last
EN
Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
EN
The method of the ongoing assessment of the reclaim quality originating from the mechanical reclamation is described in this paper. In the process, the triboelectric system of measuring amounts of dust in the dedusting part of a reclamation device was applied. Based on the online measurements of the amounts of dust generated in the spent sand-reclamation process and the post-process determinations of the ignition losses and granular structures of the removed dust, the proper work parameters of the experimental reclaimer were selected. The allowable value of the ignition losses as well as the main fraction of the reclaimed matrix being similar to fresh sand was assumed as the main criteria of the positive assessment of the process. Within the presented investigations, a periodically operating device for rotor-mechanical reclamation was developed. The possibility of changing the intensity and time of the reclamation treatment as well as the triboelectric system of the dust-amount measuring were applied in this device. Tests were performed for the spent moulding sand with phenol-resol resin Carbophen 5692 hardened by CO2. This sand represents the moulding sand group with a less harmful influence on the surroundings for which the recovery of the quartz matrix utilising the reclamation requires stricter control of the parameters of the reclamation process and reclaim quality.
EN
The aim of this paper is to determine the influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. The biomaterial is introduced into the moulding sand in order to accelerate the biodegradation of post-regeneration dust and thus to reduce the amount of harmful waste from foundries in landfills. This addition, however, can’t deteriorate the technological properties of the moulding sand, including its ability to mechanical regeneration. Chemically bonded moulding sands are characterized by high ability to mechanical regeneration, which reduces the consumption of the raw material and costs related to their transport and storage. A side effect of the regeneration process is the formation of a large amount of post-regeneration dusts. According to the tendencies observed in recent years, moulding processes must meet high requirements connected to environmental protection including problems related to the disposal of generated wastes. A partial replacement of synthetic binding materials with biomaterials may be one of scientific research directions on the production of innovative foundry moulding and core sands. The conducted regeneration tests presented in this paper initially proved that biomaterial slightly decreases the quality of reclaim from moulding sand with its addition. However, its ability to regeneration increases with time of the process. In previous research authors tested biodegradability of the dust remaining after the regeneration process. The tests proved that moulding sand with biomaterial added at the stage of the production process is characterized by about three times better biodegradability than the same moulding sand without additive.
PL
Tematem niniejszej pracy jest określenie wpływu dodatku biomateriału (PCL) do spoiwa na jakość regeneratu z samoutwardzalnych mas furanowych. Zadaniem biomateriału jest przyspieszenie biodegradacji pyłów poregeneracyjnych i tym samym doprowadzenie do zredukowania na składowiskach ilości szkodliwych odpadów pochodzących z odlewni. Dodatek ten nie może jednak pogarszać właściwości technologicznych masy, w tym jej zdolności do regeneracji mechanicznej. Autorzy przeprowadzili proces regeneracji mechanicznej, a następnie badaniom poddali regeneraty z mas formierskich utwardzanych chemicznie przeznaczonych do produkcji wielkogabarytowych odlewów żeliwnych. Odlewy żeliwne znajdują szerokie zastosowanie w motoryzacji, transporcie morskim i kolejowym, w energetyce, rolnictwie oraz budownictwie. Produkcja odlewu wielkogabarytowego o złożonym kształcie, charakteryzującego się wysoką jakością przy zachowaniu wymaganych właściwości użytkowych, obejmuje wiele etapów procesu produkcyjnego. Jednym z nich jest odpowiedni dobór technologii mas formierskich i rdzeniowych. Masy formierskie i rdzeniowe wykorzystywane są do produkcji odlewów w około 80% wszystkich odlewni. Największą ilość odpadów wytwarzanych w odlewniach stanowi zużyta masa formierska / rdzeniowa i sięga ona czasem nawet 90%. Przyjmuje się, że średnio z 1 Mg odlewów powstaje 0,6-1,0 Mg zużytej masy [4, 5], a według [2] do wyprodukowania 1 kg odlewu potrzeba około 4 kg masy formierskiej. Światowa produkcja odlewów wynosi około 100 mln Mg [2, 6], w tym odlewy żeliwne w masach formierskich utwardzanych chemicznie w ilości 30 mln Mg, co przy założeniu stopnia regeneracji na poziomie 40-50% daje 15-18 mln Mg zużytego piasku [4]. Prezentowany w pracy temat poświęcony jest materiałom pochodzącym z procesu odlewania do form piaskowych wykonanych z piasku kwarcowego ze spoiwem organicznym na bazie żywicy modyfikowanej alkoholem furfurylowym, utwardzanej mieszaniną kwasów zawierających siarkę.
EN
The essence of ablation casting technology consists in pouring castings into single-use moulds made from the mixture of sand and a water-soluble binder. After pouring the mould with liquid metal yet while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in ablation casting. The research is based on the use of water glass 145 and 150 as binders. As part of the research, loose moulding mixtures based on two silica sands from different sand mines with different content of binders were prepared. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Our own research also confirmed the possibility of using these sand mixtures in terms of both casting surface quality and sand reclamation. The results presented in this paper prove that both sand grains and types of binder tested may be used as components in moulding sands devoted to ablation casting.
EN
The foundry industry is looking for solutions that improve the quality of the finished product and solutions that reduce the negative impact of the industry on the natural environment [26]. This process leads to work on the use of new or previously unused materials for binders. Organic and inorganic foundry binders are replaced by renewable materials of plant origin to meet the requirements of both the foundry customers and the environmental and health and safety regulations. The aim of this work was to identify the applicability of renewable and organic malted barley binder in moulding sand technology. The influence of the malt binder content on dry tensile strength, dry bending strength, dry permeability, dry wear resistance and flowability were evaluated. The results show that the malted barley binder can be self contained material binding the high-silica sand grains. Selected mechanical properties of moulding sands were found to increase with an increase in binder content. It was observed that malted barley binder creates smooth bonding bridges between high-silica sand grains.
6
PL
Celem eksperymentu było zbadanie homogeniczności pryzmy piasku formierskiego. W tym celu wykonano pojedynczą ekstrakcję badanego materiału za pomocą dziesięcioprocentowego roztworu kwasu azotowego (V). W tak przygotowanych próbkach oznaczono ilościowo metale takie jak żelazo i magnez przy pomocy absorpcyjnej spektroskopii atomowej. Oceny homogeniczności pryzmy piasku odlewniczego dokonano na podstawie zawartości wybranych metali (żelazo, magnez) w poszczególnych próbkach pobranych na różnych wysokościach pryzmy.
EN
The aim of the study was to investigate the homogeneity of the moulding sand prism. There was a single extraction of the tested material performed. It was conducted using a ten-percent solution of nitric acid (V). After extraction, quantitative determination of iron and magnesium was done by means of atomic absorption spectrometry method. The assessment of the homogeneity of the foundry sand prism was made on the basis of the content of iron and magnesium in individual samples collected at different heights of the prism.
EN
In recent years, the demand for products made of biodegradable or partially biodegradable materials has been increasing. This is mainly due to the ever-increasing amount of waste in landfills, but also to the problem of post-production waste management. This problem also concerns waste from the casting process of sands made on the basis of furfuryl resin, as well as residues from the regeneration process of these sands. The article presents the issues related to the methodology of research on the biodegradation process both in the natural environment and methods conducted in laboratory conditions. The preliminary results of the research on the biodegradation process in the aquatic environment, to which the dusts from mechanical regeneration of moulding sand were subjected, indicate the directions of further research and work in the field of selection of components of moulding sand with biodegradable properties. These tests should be carried out primarily in terms of determining the minimum and maximum amount of the addition of a biodegradable component to the moulding sand.
EN
The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and water-soluble binder. After pouring the mould with liquid metal the mould is destructed (washed out) using a stream of cooling medium, which in this case is water. The process takes place while the casting is still solidifying. The following paper focuses on testing the influence of the modified ablation casting of aluminum alloy on casts properties produced in moulds with hydrated sodium silicate binder. The authors showed that the best kind of moulding sands for Al alloy casting will be those hardened with physical factors – through dehydration. The analysis of literature data and own research have shown that the moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the modified ablation casting of Al alloys. In the paper the use of microwave hardened moulding sands has been proposed. The moulds were prepared in the matrix specially designed for this technology. Two castings from the AlSi7Mg alloy were made; one by traditional gravity casting and the other by gravity casting using ablation. The conducted casts tests showed that the casting made in modified ablation casting technology characterizes by higher mechanical properties than the casting made in traditional casting technology. In both experimental castings the directional solidification was observed, however in casting made by ablation casting, dimensions of dendrites in the structure at appropriate levels were smaller.
EN
A thermo-insulating moulding sand with a binder made of aluminosilicate microspheres with organic binder was subjected to testing. The aim of the analysis was to determine selected technological properties of the developed compounds. Compressive strength, friability and gas permeability were determined. The binder content was changed within a range of 5÷20 wt% with a 5% step. The applied matrix is characterized by good thermo-insulating properties and a small size of grains, while synthetic organic binder has favourable functional properties, among which the most noteworthy are the extended life and setting time, good rheological properties as well as high resistance to chemical agents. The intended use of the compound is the casting of 3D CRS (Composite Reinforced Skeletons), which are characterized by a well-developed heat transfer surface area, good absorption of impact energy, low mass and a target thickness of connectors within a range of 1.5÷3 mm. The construction of 3D CRS castings is an original concept developed by the employees of the Department of Foundry Engineering at the Silesian University of Technology.
EN
The paper presents the results of an investigation of the gases emission of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using in accordance with the procedure developed at the Faculty of Foundry Engineering of AGH - University of Science and Technology, on the patented stand for determining gas emissions. Quantification of BTEX compounds was performed involving gas chromatography method (GC).The study showed that the introduction of relaxation additive has no negative impact on gas emissions - both in terms of the total amount of gases generated, as well as emissions of BTEX compounds. Among the BTEX compounds, only benzene is emitted from the tested moulding sands. Its emission is associated with the introduction a small amount of an organic hardener from the group of esters.
EN
Bentonites and clays are included in the group of drilling fluids materials. The raw materials are mainly clay minerals, which are divided into several groups, like montmorillonite, kaolinite, illite, biotite, muscovite, nontronite, anorthoclase, microcline, sanidine or rutile, differing in chemical composition and crystal lattice structure. Clay minerals have a layered structure forming sheet units. The layers merge into sheets that build up to form the structure of the mineral. The aim of the studies carried out in the ŁUKASIEWICZ Research Network - Foundry Research Institute is to explore the possibility of using minerals coming from Polish deposits. The article outlines the basic properties of hybrid bentonites, which are a mixture of bentonite clay called beidellite, originating from overburden deposits of the Turoszów Mine, and foundry bentonite from one of the Slovak deposits. As part of the physico-chemical tests of minerals, measurements included in the PN-85/H-11003 standard, i.e. montmorillonite content, water content and swelling index, were carried out. Additionally, the loss on ignition and pH chemical reaction were determined. Based on the thermal analysis of raw materials, carried out in the temperature range from 0 to 1000⁰C, changes occurring in these materials during heating, i.e. thermal stability in contact with liquid metal, were determined. Examinations of the sand mixture based on pure clay and bentonite and of the sand mixture based on hybrid bentonites enabled tracing changes in permeability, compressive strength and tensile strength in the transformation zone as well as compactability referred to the clay content in sand mixture. Selected technological and strength parameters of synthetic sands are crucial for the foundry, because they significantly affect the quality of the finished casting. Based on the analysis of the results, the optimal composition of hybrid bentonite was selected.
PL
Celem niniejszej pracy jest wykazanie możliwości zastosowania proekologicznych mas z uwodnionym krzemianem sodu na formy do odlewania ablacyjnego. Technologia odlewania ablacyjnego przeznaczona jest przede wszystkim do wykonywania odlewów w formach piaskowych o zróżnicowanej grubości ścianki i skomplikowanych kształtach. W ramach niniejszej pracy przedstawiono wpływ zawartości spoiwa oraz czasu utwardzania na wytrzymałość na zginanie Rg mas formierskich ze spoiwami na bazie uwodnionego krzemianu sodu utwardzanych w technologii utwardzania mikrofalowego. Celem badań jest opracowanie optymalnego składu mas, który zapewni wytrzymałość niezbędną do wytworzenie formy do przeprowadzenia procesu odlewania ablacyjnego. Zastosowana mas musi jednocześnie zagwarantować podatność formy na destrukcyjne działanie medium ablacyjnego, którym jest woda. Przeprowadzone badania wykazały, że utwardzanie mikrofalowe zapewnia uzyskanie zadowalających wytrzymałości przy niskiej zawartości spoiwa w masie.
EN
The aim of this work is to demonstrate the possibility of using Environmentally friendIy molding sands with hydrostated sodium silicate for ablation casting molds. The ablation casting technology is intended primarily for making casts in sand molds with diversified wall thickness and complex shapes. This paper presents the effect of binder content and curing time on the bending strength Rg of molding sands with binders based on hydrated sodium silicate hardened in microwave curing technology. The aim of the research is to develop an optimal molding sand composition that will provide the strength necessary to form a mold for carrying out the ablative casting process. the applied sands must simultaneously guarantee the susceptibility of the mold to the destructive action of the ablative medium, which is water. The tests have shown that microwave curing provides satisfactory strengths with low binder content.
EN
Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
EN
In this work, the influence of microwave drying parameters such as irradiation time and microwave power level on the properties of synthetic moulding sands is presented. Determination of compressive strength Rcs, shear strength Rts and permeability Ps of synthetic moulding sands with the addition of two different bentonites, after drying process with variable microwave parameters were made. The research works were carried out using the microwave oven with regulated power range of the electromagnetic field. From the results obtained, the significant influence of both drying time and microwave power level on the selected properties of moulding sands was observed. In comparison to the conventional drying method, microwave drying allows to obtain higher compressive strength of the synthetic moulding sand. The influence of application microwave irradiation on permeability was not observed. Higher strength characteristics and shorter drying time are major advantages of application of the electromagnetic irradiation for drying of the synthetic moulding sand with regard to conventional drying method.
EN
Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.
EN
Gas atmosphere at the sand mould/cast alloy interface determines the quality of the casting obtained. Therefore the aim of this study was to measure and evaluate the gas forming tendency of selected moulding sands with alkyd resins. During direct and indirect gas measurements, the kinetics of gas evolution was recorded as a function of the temperature of the sand mixture undergoing the process of thermal destruction. The content of hydrogen and oxygen was continuously monitored to establish the type of the atmosphere created by the evolved gases (oxidizing/reducing). The existing research methodology [1, 7, 8] has been extended to include pressure-assisted technique of indirect measurement of the gas evolution rate. For this part of the studies, a new concept of the measurement was designed and tested. This article presents the results of measurements and compares gas emissions from two sand mixtures containing alkyd resins known under the trade name SL and SL2002, in which the polymerization process is initiated with isocyanate. Studies of the gas forming tendency were carried out by three methods on three test stands to record the gas evolution kinetics and evaluate the risk of gas formation in a moulding or core sand. Proprietary methods for indirect evaluation of the gas forming tendency have demonstrated a number of beneficial aspects, mainly due to the ability to record the quantity and composition of the evolved gases in real time and under stable and reproducible measurement conditions. Direct measurement of gas evolution rate from the tested sands during cast iron pouring process enables a comparison of the results with the results obtained by indirect methods.
EN
The paper presents the results of laboratory tests into the effects of moisture and the content of two types of bentonite on dielectric properties of moulding sand. The use of electromagnetic waves in foundry industry is becoming more and more popular, which provides to some extent alternatives to conventional drying methods. Experimental studies published so far have shown the validity of using microwaves for drying classic moulding sands with bentonite. However, these studies lack data on the effect of moisture or bentonite content in moulding sand on the real component ε' or imaginary component ε'' of the relative complex electrical permittivity. The presented results may become in the future the basis for the evaluation of the composition of moulding sands, taking into account the phenomena occurring under the influence of electromagnetic field, which directly translates into the quality of the castings made and may constitute an attempt to develop a mathematical model of electric properties of moulding sands.
EN
The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140ºC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
EN
The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.
20
EN
The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
first rewind previous Strona / 17 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.