Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  morsification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This is the first part of our two part paper with the same title. Following our Coxeter spectral study in [Fund. Inform. [123(2013), 447-490] and [SIAM J. Discr. Math. 27(2013), 827- 854] of the category UBigrn of loop-free edge-bipartite (signed) graphs Δ, with n ≥ 2 vertices, we study here the larger category RBigrn of Cox-regular edge-bipartite graphs Δ (possibly with dotted loops), up to the usual Z-congruences ~Z and ≈Z. The positive graphs Δ in RBigrn, with dotted loops, are studied by means of the complex Coxeter spectrum speccΔ C C, the irreducible mesh root systems of Dynkin types Bn, n ≥ 2, Cn, n ≥ 3, F4, G2, the isotropy group Gl(n;Z)Δ (containing the Weyl group of Δ), and by applying the matrix morsification technique introduced in [J. Pure A ppl. Algebra 215(2011), 13-24] and [Fund. Inform. [123(2013), 447-490]. One of our aims of the paper is to study the Coxeter spectral analysis question: "Does the congruence Δ ≈Z Δ' hold, for any pair of connected positive graphs Δ;Δ' ∊ RBigrn such that speccΔ = speccΔ' and the numbers of loops in Δ and Δ0 coincide?" We do it by a reduction to the Coxeter spectral study of the Gl(n, Z)D-orbits in the set MorD Mn(Z) of matrix morsifications of a Dynkin diagram D = DΔ ∊ UBigrn associated with Δ. In particular, we construct in the second part of the paper numeric algorithms for computing the connected positive edge-bipartite graphs Δ in RBigrn, for a fixed n ≥ 2, mesh algorithms for computing the set of all Z-invertible matrices B ∊ Gl(n;Z) definining the Z-congruence Δ ≈Z Δ', for positive graphs Δ;Δ' ∊ RBigrn, with n ≥ 2 fixed, and mesh-type algorithms for the mesh root systems Γ(RD Δ(RΔФΔ). In the first part of the paper we present an introduction to the study of Cox-regular edge-bipartite graphs Δ with dotted loops in relation with the irreducible reduced root systems and the Dynkin diagrams Bn, n ≥ 2, Cn, n ≥ 3, F4, G2. Moreover, we construct a unique ФD-mesh root system (RD,ФD) for each of the Cox-regular edge-bipartite graphs Bn, n ≥ 2, Cn, n ≥ 3, F4, calG2 of the type Bn, n ≥ 2, Cn, n ≥ 3, F4, G2, respectively. Our main inspiration for the study comes from the representation theory of posets, groups and algebras, Lie theory, and Diophantine geometry problems.
EN
This is a second part of our two part paper with the same title. Following our Coxeter spectral study in [Fund. Inform. [123(2013), 447-490] and [SIAM J. Discr. Math. 27(2013), 827- 854] of the category UBigrn of loop-free edge-bipartite (signed) graphs Δ, with n = 2 vertices, we study here the larger category RBigrn of Cox-regular edge-bipartite graphs Δ (possibly with dotted loops), up to the usual Z-congruences ~Z and Z. The positive graphs Δ in RBigrn, with dotted loops, are studied by means of the complex Coxeter spectrum speccΔ C, the irreducible mesh root systems of Dynkin types Bn, n = 2, Cn, n = 3, F4, G2, the isotropy group Gl(n, Z)Δ (containing the Weyl group of Δ), and by applying the matrix morsification technique introduced in [J. Pure Appl. Algebra 215(2011), 13-24] and [Fund. Inform. [123(2013), 447-490]. One of our aims of our two part paper is to study the Coxeter spectral analysis question: "Does the congruence Δ Z Δ' hold, for any pair of connected positive graphs Δ,Δ' ∊ RBigrn such that speccΔ = speccΔ' and the numbers of loops in ΔandΔ' coincide?"We do it by a reduction to the Coxeter spectral study of the Gl(n, Z)D-orbits in the set MorD C Mn(Z) of matrix morsifications of a Dynkin diagram D = DΔ ∊ UBigrn associated with Δ. In this second part, we construct numeric algorithms for computing the connected positive edge-bipartite graphs Δ in RBigrn, for a fixed n = 2, mesh algorithms for computing the set of all Z-invertible matrices B ∊ Gl(n, Z) definining the Z-congruenceΔ Z Δ', for positive graphsΔ,Δ' ∊ RBigrn, with n geq2 fixed, and mesh-type algorithms for the mesh root systems Γ(R·Δ,ΦΔ). We also present a classification and a structure type results for positive Cox-regular edge-bipartite graphs Δ with dotted loops.
EN
By computer algebra technique and computer computations, we solve the mesh morsification problems 1.10 and present a classification of irreducible mesh roots systems, for some of the simply-laced Dynkin diagramsΔ ∈ {An,Dn, E6, E7,E8}. The methods we use show an importance of computer algebra tools in solving difficult modern algebra problems of enough high complexity that had no solution by means of standard theoretical tools only. Inspired by results of Sato [Linear Algebra Appl. 406(2005), 99-108] and a mesh quiver description of indecomposable representations of finite-dimensional algebras and their derived categories explained in [London Math. Soc. Lecture Notes Series, Vol. 119, 1988] and [Fund. Inform. 109(2011), 425-462] (see also 5.11), given a Dynkin diagram Δ, with n vertices and the Euler quadratic form qΔ : Zn → Z, we study the set MorΔ ⊆ Mn(Z) of all morsifications of qΔ [37], i.e., the non-singular matrices A ∈ Mn(Z) such that its Coxeter matrix CoxA := −A · A−tr lies in Gl(n, Z) and qΔ(v) = v · A · vtr, for all v ∈ Zn. The matrixWeyl groupWΔ (2.13) acts on MorΔ and the determinant detA ∈ Z, the order cA ≥ 2 of CoxA (i.e. the Coxeter number), and the Coxeter polynomial coxA(t) := det(t ·E−CoxA) ∈ Z[t] are WΔ-invariant. Moreover, the finite set RqΔ = {v ∈ Zn; qΔ(v) = 1} of roots of qΔ is CoxA- invariant. The following problems are studied in the paper: (a) determine the WΔ-orbits Orb(A) of MorΔ and the set CPolΔ = {coxA(t); A ∈ MorΔ}, (b) construct a finite minimal CoxA-mesh quiver in Zn containing all CoxA-orbits of the finite set RqΔ of roots of qΔ. We prove that CPolΔ is a finite set and we construct algorithms allowing us to solve the problems for the morsifications A = [aij ] ∈ MorΔ, with |aij | ≤ 2. In this case, by computer algebra technique and computer computations, we prove that, for n ≤ 8, the number of the WΔ-orbits Orb(A) is at most 6, sΔ := |CPolΔ| ≤ 9 and, given A,A′ ∈ MorΔ and n ≤ 7, the following three conditions are equivalent: (i) A′ = Btr · A · B, for some B ∈ Gl(n, Z), (ii) coxA(t) = coxA′ (t), and (iii) cA · detA = cA′ · detA′. We also show that sΔ equals 6, 5, and 9, if Δ is the diagram E6, E7, and E8, respectively.
EN
We study integral solutions of diophantine equations q(x) = d, where x = (x1, . . . , xn), n ≥1, d .∈Z is an integer and q : Z^n →Z is a non-negative homogeneous quadratic form. Contrary to the negative solution of the Hilbert’s tenth problem, for any such a form q(x), we give efficient algorithms describing the set Rq(d) of all integral solutions of the equation q(x) = d in a Φ_A-mesh translation quiver form. We show in Section 5 that usually the set Rq(d) has a shape of a Φ_A-mesh sand-glass tube or of a A-mesh torus, see 5.8, 5.10, and 5.13. If, in addition, the subgroup Ker q = {v ∈Z^n; q(v) = 0} of Zn is infinite cyclic, we study the solutions of the equations q(x) = 1 by applying a defect δ_A : Z^n → Z and a reduced Coxeter number čA ∈ N defined by means of a morsification b_A : Zn × Zn → Z of q, see Section 4. On this way we get a simple graphical algorithm that constructs all integral solutions in the shape of a mesh translation oriented graph consisting of Coxeter A-orbits. It turns out that usually the graph has at most three infinite connected components and each of them has an infinite band shape, or an infinite horizontal tube shape, or has a sand-glass tube shape. The results have important applications in representation theory of groups, algebras, quivers and partially ordered sets, as well as in the study of derived categories (in the sense of Verdier) of module categories and categories of coherent sheaves over algebraic varieties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.