It is proved that the Köthe–Bochner function space E(X) has property β if and only if X is uniformly convex and E has property β. In particular, property β does not lift from X to E(X) in contrast to the case of Köthe–Bochner sequence spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study a geometric property in Köthe spaces which is called orthogonal uniform convexity (UC┴). It was introduced in [19]. We prove that the class of Köthe spaces with property (UC┴) is a proper subset of the class of uniformly monotone and P-convex Köthe spaces. Next we consider connections between (UC┴) and property (β) of Rolewicz. We shown that the implication (UC┴) → (β) is true in any Köthe sequence space. Moreover, we find criteria for Orlicz function (sequence) spaces to be orthogonally uniformly convex. As a corollary we get that there holds (UC) → (UC┴) → (β) in any Köthe sequence space and the converse of any of these implications is not true. Furthermore, the implications (UC) → (β) → (UC┴) hold in any Köthe function space and the second one cannot be reversed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.