Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  molten hydroxide electrolyte
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The direct carbon fuel cell (DCFC) is a power generation device that converts the chemical energy of carbonaceous fuels (e.g. fossil coals, charred biomass, activated carbons, graphite, coke, carbon black, etc.) directly into electricity. However, the use of coal in the DCFC is sometimes problematic particularly if volatile matter evolves from the fuel during fuel cell operation. The recommended course of action to minimize that problem is to pre-treat thermally or even pyrolyze the coal and remove the volatiles before the fuel is used in the fuel cell. In this paper, three raw and thermally-treated coals of various origins have been compared for electrochemical activity in a direct carbon fuel cell with molten hydroxide electrolyte (MH-DCFC). The thermal pre-treatment of selected coals was carried out in an inert gas atmosphere at 1023 K. It was found that-compared to raw coals the pyrolyzed coals presented lower maximum current and power densities at 723 K but simultaneously provided faster stabilization of the open circuit voltage.
EN
The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m-2) was obtained for temperature 773 K and air flow rate 8.3 x 106 m3s-1. It was shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.