Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  modulation filterbank
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article concerns with a new model of the sound envelope processing in the auditory system. The so-called non-negative-impulse-response (NNIR) modulation filters concept argues that if any form of the acoustic signal envelope filtering took place in the auditory pathway, this process should not be described in terms of a band-pass filtration. This modification of the traditional model of the auditory system temporal resolution, based on the modulation filterbank (MFB) activity, results from the cardinal property of the sound envelope and its neural representation, i.e. neural discharges period histogram, which are unavoidably unipolar signals of non-negative values. It has been assumed that if hypothetical modulation filters existed, they should be characterised by a non-negative-impulse-response and, consequently, the frequency characteristics of such filters might not reveal the band-pass properties. The results of the model investigations are compared with selected psychophysical and physiological data.
2
Content available remote Detection of asynchronicity in the amplitude modulation domain
EN
A just noticeable time delay (JNTD) between the onset of a single sinusoidal amplitude modulation (AM) and a complex modulation applied to the same carrier was measured in this study. The carrier was a 4-kHz tone and the modulator was a five-component multitone complex. In the first experiment, four of five components had constant frequencies, i.e. 160, 170, 180, 190 Hz and they were turned on synchronously (synchronous components) in the middle of the carrier duration. The frequency of the fifth component (asynchronous one) varied from 10 to 150 Hz and it was turned on earlier than the synchronous ones. In the second experiment, the asynchronous component was situated in the centre of the synchronous components' spectrum; its frequency was constant and equal to 100 Hz. The spectral separation between the asynchronous component and the synchronous ones of the modulator varied. The results, i.e. the just noticeable time delay between the onset of a single sinusoidal amplitude modulation and a complex modulation (or asynchrony threshold), are analogous to those obtained in the audible frequency domain. They can be interpreted on the basis of the auditory system model containing a bank of modulation filters. It seems that two separate mechanisms are responsible for the JNTD between the onset of the single component modulation and the complex modulation. The first one results from an interaction between all the components of a modulator passing a single modulation filter tuned to the frequency of the asynchronous component. This sort of interaction (or masking) was most effective when the spectral separation between the asynchronous component and the synchronous ones was the smallest one. With an increase in this separation, a significant decrease in the asynchrony thresholds was observed. The second mechanism determining the obtained asynchrony thresholds is based on the uncertainty principle: modulation filters with good frequency selectivity, i.e. filters tuned to low modulation rates, are characterised by a poor time resolution. Thus, in the case of the lowest frequencies of the asynchronous component the subjects' performance would be relatively poor even when there was a significant spectral interval between this component and the synchronous ones. As in the audible frequency domain, the pattern of the asynchronicity thresholds was related to the modulation filter bandwidth. The obtained results suggest the bandwidth of the modulation filters whose Q factor should be close to 1 or less.
3
Content available Binaural masking of amplitude modulation
EN
A new concept concerned with the transformation of acoustic stimuli in the auditory system postulates the existence of a form of spectral analysis applied to the amplitude changes of the stimuli. It is assumed that this analysis takes place in the so-called modulation filters, i.e. bandpass linear filters tuned to different rates of the amplitude changes. The most striking argument supporting this idea is an effect of masking in the amplitude modulation domain whose nature can be easily explained basing on this concept. As the modulation filters are situated on the higher levels of the auditory system, it is also assumed that this form of masking is entirely a central process. However, most of the studies concerned with masking in the modulation domain used monaural listening only. Therefore, the main purpose of the presented here experiments was to investigate whether this type of masking is entirely a central process. Using a Three-Alternative Forced-Choice (3AFC) procedure the binaural and monaural masked thresholds of amplitude modulation were determined. A sinusoidal carrier at a frequency of 4 kHz was amplitude modulated by a specially designed band of noise characterized by a very low value of the crest factor, which was used as a masking signals. Different bandwidths of the modulating masking signals were used as well as different center frequencies to investigate whether the masking patterns in the modulation domain depend on the masker bandwidth and its center frequency. The modulating target (masked) signal was a pure tone at a frequency range from 2 to 256 Hz. Both modulating signals were applied to the same sinusoidal carrier signal. The most effective masking was noticed when the rate of the sinusoidal modulation was close to the center frequency of the masking signal or when it was in its spectral range and decreased outside of this range. The character of this dependence confirms the existence of some form of a frequency selectivity in the modulation rate domain similarly to the audible frequency domain. The thresholds for monaural and binaural listening were very close to each other. This implies that masking in the modulation domain is a central process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.