Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  modelowanie termomechaniczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The paper aims to find the magnitude and nature of thermal residual stresses that occur during cooling of a copper sample with a thermally synthesized oxide layer of Cu2O. Design/methodology/approach: Thermo-mechanical analysis was performed by the finite element method using Ansys Software. The results of thermal analysis were used to study the resulting stress-strain state of the thin film/coating system after cooling. Findings: Based on the modeling results, the paper determined the most stress-strain areas of the sample with a coating, which are the free edges of the interfaces between the copper substrate and the Cu2O oxide layer. Research limitations/implications: The main limitations of the study are the use of certain simplifications in the condition setup, for instance, uniform cooling of the thin film/coating system, homogeneity and isotropy of substrate and thin film materials, invariance of their properties with temperature changes, etc. Practical implications: The results obtained can be used to control the stress-strain state of the thin film/coating system and prevent deformations and destruction of thin-film structures during their production and operation of products with them. Originality/value: The study of new promising methods for the formation of oxide nanostructures, for instance in a plasma environment, requires a sufficient theoretical basis in addressing the origin and development of stresses.
EN
Even if the effectiveness of friction pendulum bearings has been extensively proven by means of numerous experimental programs carried out worldwide, many aspects concerning their behavior under seismic action still need to be clarified. One of these is related to the temperature rises induced by the heat generated by friction during the dynamic sliding of the surfaces in contact, which may significantly affect the superficial frictional properties of the sliding surfaces involved, thus reducing the overall performance of the isolating system, up to re-coupling the structure with the ground shaking, in a limit scenario. With the aim to contribute to a better understanding of this aspect, and to develop a simplified tool capable to reproduce the hysteretic force–displacement loops together with the corresponding temperature variations, a thermo-mechanical model for the multiple friction pendulum devices is proposed. The model is based on the combination of simple thermomechanical rheological elements and does not require the evaluation of any convolution integral arising from the solution of the heat conduction problem as it happens with many existing models. The model is numerically implemented under displacement-control and its effectiveness is validated through the numerical simulation of some recent experimental results that shows a good agreement with the observed behavior.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.