In recent years, there has been a growing interest in the use of modern IT tools in agricultural engineering. Both image analysis methods and artificial neural networks, designed to reproduce the work of the human brain, serve to build predictive and classification models, highly useful for modern agriculture. Correct identification of both the seed material and the produced crops becomes a priority of agricultural engineering, ensuring adequate efficiency and cost-effectiveness of agrotechnical operations. This article presents a project whose aim was to develop an effective neural model for qualitative identification of the variety of stored consumer potato tubers by using input data obtained in the process of digital image analysis. The designed and created artificial neural network model (multilayer perceptron), using informations in the form of selected graphic descriptors, classifies three selected varieties of edible potato (Denar, Gala, Vineta).
PL
W ostatnich latach dostrzec można wzrastające zainteresowanie wykorzystywaniem nowoczesnych narzędzi informatycznych w inżynierii rolniczej. Zarówno metody analizy obrazu, jak i sztuczne sieci neuronowe, mające odwzorowywać pracę ludzkiego mózgu, służą budowaniu modeli predykcyjnych i klasyfikacyjnych, wysoce użytecznych dla współczesnego rolnictwa. Właściwa identyfikacja zarówno materiału siewnego, jak i wytworzonych plonów, staje się priorytetem inżynierii rolniczej, zapewniając odpowiednią efektywność i opłacalność przeprowadzanych zabiegów agrotechnicznych. Niniejszy artykuł przedstawia projekt, którego celem było opracowanie efektywnego modelu neuronowego służącego do identyfikacji jakościowej odmiany magazynowanych bulw ziemniaków konsumpcyjnych przy użyciu danych wejściowych pozyskanych w procesie analizy obrazów cyfrowych. Zaprojektowany i wytworzony model sztucznej sieci neuronowej (perceptron wielowarstwowy), korzystający z informacji w postaci wybranych deskryptorów graficznych, klasyfikuje trzy wybrane odmiany ziemniaka jadalnego (Denar, Gala, Vineta).
The paper presents a description of used methods and exemplary mathematical models which are classified into theoretical-empirical models of thermal processes. Such models encompass equations resulting from the laws of physics and additional empirical functions describing processes for which analytical models are complex and difficult to develop. The principle of developing, advantages and disadvantages of presented models as well as quality prediction assessment were presented. Mathematical models of a steam boiler, a steam turbine as well as a heat recovery steam generator were described. Exemplary calculation results were presented and compared with measurements.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Artykuł opisuje próbę stworzenia modelu neuronowego wymiennika regeneracyjnego siłowni kondensacyjnej pracującego w zmiennych warunkach ruchu. Wzorzec poprawnej pracy elementów siłowni turboparowej jest pożądany w dziedzinie diagnostyki, ponieważ poprawnie pracujący model neuronowy jest w stanie zastąpić czasochłonne obliczenia bilansowe.
EN
Article describes the attempt to create a neural model of condensing power plant’s regenerative heat exchanger which works in changing conditions. The proper operation plant’s components pattern is needed in areas of diagnosis because this kind of neural model can replace time- consuming and complicated calculations.
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
PL
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
The paper presents selected results of research on learning design and artificial neural network (ANN) models paperless office as a state defined as a document repository. A review of selected issues on artificial neural network, and environments to support their generation and learning. In particular, attention was drawn to the new modeling capabilities leading to obtaining neural models of electronic systems. Artificial neural network is designed and taught her electronic office model based on the size of the input 11 and 9 variables, par 72 trainees on the actual size of government agencies for the year 2007. The model was obtained in MATLAB and Simulink and using the Neural Network Toolbox. Showing the possibilities of using the model to test sensitivities and simulation in Simulink.
Artykuł przedstawia możliwości wykorzystania sztucznych sieci neuronowych (SSN) w celu odtworzenia pracy wymienników regeneracyjnych elektrowni kondensacyjnej. Stworzony model pracy wymienników w zmiennych warunkach ruchu znajduje zastosowanie w badaniach diagnostycznych owych urządzeń jak i całego systemu elektrowni. Referat zawiera wprowadzenie do tematyki sztucznych sieci neuronowych, opis sztucznej sieci neuronowej (SSN) wykorzystanej do modelowania pracy wymienników regeneracyjnych, charakterystykę danych pomiarowych użytych w procesie treningu oraz uzyskane wyniki i wynikające z nich wnioski.
EN
Presented are possibilities of artificial neural networks (ANNs) application with the aim to simulate the work of regenerative heat exchangers in a condensing power plant. The created model of exchangers’ work in variable operating conditions can be applied in diagnostic tests of these installations and in the whole power plant system as well. There we can also find an introduction to the issue of ANNs, a description of such network used to model a heat exchanger’s work and a characteristics of measurement data used in an ANN training process. Described are also obtained effects and the resulting conclusions.
Examination of quality factors for agricultural and food products becomes more and more important because of their suitability for further processing and trade turnover. Independently of processing, agricultural and food industry is also expected to provide suitable protection for raw vegetable products generally characterised by inferior durability, and their processing into safe and durable food products, while maintaining proper taste quality. Computerised image analysis, neural modelling, and use of artificial intelligence methods have enormous future also in the fields of food industry and agriculture. Development of fast and efficient method is very much justified, since it will allow making accurate and quick observations without using any additional complex laboratory methods.
PL
Badanie cech jakościowych produktów rolno-spożywczych ma coraz większe znaczenie ze względu na przydatność ich do dalszej przeróbki i obrotu handlowego. Zadaniem przemysłu rolno-spożywczego jest oprócz przetwórstwa także właściwe zabezpieczenie, na ogół mało trwałych surowców roślinnych oraz ich przetworzenie w bezpieczne i trwałe produkty spożywcze – z zachowaniem ich odpowiednich walorów smakowych. Komputerowa analiza obrazu, modelowanie neuronowe, wykorzystywanie metod sztucznej inteligencji ma ogromną przyszłość również w dziedzinie przemysłu spożywczego i rolnictwa. Opracowanie szybkiej i skutecznej metody jest jak najbardziej uzasadnione, gdyż to pozwoli na dokonywanie trafnych i szybkich obserwacji, bez używania dodatkowo skomplikowanych metod laboratoryjnych.
Właściwe zarządzanie bezpieczeństwem informacji jest istotnym zagadnieniem wpływającym na jakość realizacji usług logistycznych. W artykule przedstawiono wybrane zagadnienia modelowania matematycznego dokonywania eksperckiej jego oceny. Przedstawiona metoda oceny oparta jest na wykorzystaniu sztucznych sieci neuronowych.
EN
Proper management of the information security is an important issue affecting the quality of logistical services delivery. The article presents selected aspects of mathematical modelling of conducting its expert evaluation. The presented method of assessment is based on the use of artificial neural networks.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Właściwe zarządzanie bezpieczeństwem informacji jest istotnym zagadnieniem wpływającym na jakość realizacji usług logistycznych. W artykule przedstawiono wybrane zagadnienia modelowania matematycznego dokonywania eksperckiej jego oceny. Przedstawiona metoda oceny oparta jest na wykorzystaniu sztucznych sieci neuronowych.
EN
Proper management of the information security is an important issue affecting the quality of logistical services delivery. The article presents selected aspects of mathematical modelling of conducting its expert evaluation. The presented method of assessment is based on the use of artificial neural networks.
W pracy zaprezentowano wytworzony, oryginalny system informatyczny "USG Recognizer", który zaopatrzony został w szereg funkcji wspomagających tworzenie adekwatnych zbiorów uczących, niezbędnych w procesie generowania modeli neuronowych. Dzięki tym funkcjonalnościom możliwa jest identyfikacja oraz ekstrakcja wiedzy zawartej w graficznych danych empirycznych, zakodowanej w postaci cyfrowych zdjęć ultrasonograficznych. W oparciu o zbudowaną aplikację wygenerowana została sztuczna sieć neuronowa, której celem było wspomaganie rozpoznania lub wykluczenia ciąży, dokonanego na podstawie ultrasonogramów macicy krowy. Zaproponowany system informatyczny "USG Recognizer" został zbudowany z wykorzystaniem środowisk: Visual Paradigm (UML 8.0) oraz Microsoft Visual Studio 2010 Professional Edition.
EN
The software "USG Recognizer" that was described in this work is equipped with a binarization function with threshold. The application also fulfills some additional functions such as: contrast and closing. With this functionality it is possible to achieve empirical data from digital ultrasound photo of cow's womb. The artificial neural network was generated on the basis of created application. The main purpose of this network is to support an identification or exclusion of the gestation in user's ultrasound picture. "USG Recognizer" was created using Visual Paradigm (UML 8.0) and Microsoft Visual Studio 2010 Professional Edition environments.
Proces prognozowania ma praktyczne zastosowanie w szerokim zakresie działalności ludzkiej, w tym również w rolnictwie. Jakość takich prognoz ma istotne znaczenie dla kolejnych etapów występujących w łańcuchu produkcyjno-dystrybucyjnym płodów rolnych. Celem pracy było wytworzenie neuronowego systemu informatycznego, pozwalającego na dokonanie prognozy wielkości plonu oraz zawartość skrobi w bulwach ziemniaków, na podstawie wybranych czynników agrotechnicznych.
EN
Forecasting process has practical applications in a wide range of human activity, including agriculture. The quality of such predictions is important for subsequent phases occurring in the chain of production and distribution of agricultural products. The purpose of this work, was to design, to do, and to test the informational system, which is based in technology of the artificial network of neurons, which allows to predict the size of the crops, and the contents of the starch in the potatos bulb on the basis of the chosen agro-technical factors.
Proces kompostowania polega na mikrobiologicznym rozkładzie substancji organicznych w warunkach tlenowych za pomocą mikroorganizmów termofilnych i pleśni. Podczas procesu kompostowania wydzielają się duże ilości ciepła, które może być wykorzystane do różnych celów. W literaturze światowej brak jest informacji o wykorzystaniu sieci neuronowych w modelowaniu procesów cieplnych zachodzących podczas kompostowania. Celem prezentowanej pracy było modelowanie procesu kompostowania stałych nawozów naturalnych z wykorzystaniem sztucznych sieci neuronowych, ze szczególnym uwzględnieniem analizy cieplnej zachodzących zjawisk. Skupiono się na estymacji ilości ciepła otrzymywanego w wyniku reakcji egzotermicznych zachodzących podczas procesu kompostowania. Dokonano analizy oraz wytworzono, przetestowano i zweryfikowano zbiór topologii sieci neuronowych, działających jako efektywne instrumenty predykcyjne. W tym celu wykorzystano pakiet oprogramowania analitycznego Statistica v. 7.1 moduł: "Sieci Neuronowe". Mała wartość ilorazu odchyleń standardowych oraz współczynnik korelacji bliski jedności świadczy o dobrej jakości otrzymanych sieci neuronowych.
EN
Composting process depends on microbiological decomposition of organic matter in oxygenic conditions proceeded by the thermopile microorganisms and moulds. During the process there is a lot of heat energy emission which can be used for different aims. There is no information about neural network used for modelling of composting processes in the world publications. The objective of presented work was to model the composting process of solid natural fertilizers using the artificial neural networks. I focused mainly on thermal analysis of this process. Qualification of heat emission as a result of exothermic reactions during composting process was the focus of attention. The second stage was complex analysis as well as creating, testing and verification of series of neural networks topology. The analytical software package Statistica v. 7.1: 'Neural Networks' was used. Low ratio of standard deviations and correlation coefficient close to one, provide the most important information for the good assessment of the neural network.
W referacie przedstawiono zastosowanie sztucznych sieci neuronowych do obliczania współczynnika przenikania ciepła U oraz model odwrotny, polegający na obliczaniu grubości warstwy izolacyjnej przy zadanym współczynniku. Opisano metodykę sporządzenia zbioru uczącego sztuczne sieci neuronowe oraz opisano zbiór przetestowanych sieci neuronowych. Metody sztucznej inteligencji, w tym sztuczne sieci neuronowe, pozwalają uwzględnić w obliczeniach wiele zjawisk i procesów trudnych do opisu matematycznego ze względu na swoją nieliniowość, stąd uzyskane modele neuronowe będą uzupełniane w przyszłości o dodatkowe parametry obliczeniowe.
EN
The report presents the usage of artificial neural networks to calculate heat transfer coefficient U and the opposite model, which consists on calculating the thickness of the isolation layer with given coefficient. The methodology of making a set teaching artificial neural networks and the set of tested neural networks were described. The methods of artificial intelligence, including neural networks, let include in calculations many phenomena and processes hard to describe mathematically because of their nonlinearity, so obtained neural models will be completed by additional computable parameters in future.
W pracy podjęto próbę rozpoznawania odmian jabłek na podstawie ich cech charakterystycznych, z wykorzystaniem wybranych metod sztucznej inteligencji. W tym celu zastosowano wybrane topologie sztucznych sieci neuronowych, jako narzędzi do identyfikacji jabłek na podstawie ich cyfrowych obrazów.
EN
The paper attempts to identify varieties of apples on the basis of their characteristics, using the chosen methods of artificial intelligence. For this purpose were used the selected topologies of artificial neural networks as tools to identify the apples on the basis of their digital images.
Celem pracy było badanie mozliwości klasyfikacyjnych sieci neuronowych w procesie identyfikacji ziarniaków pszenicy, jęczmienia oraz kukurydzy. Wykorzystana metoda separacji polegała na rozpoznawaniu różnic kształtów analizowanych obiektów. W celu identyfikacji kształtu, a następnie zakodowania pozyskanych danych empirycznych do postaci zbiorów uczących, wykorzystano tzw. superformułę zaproponowaną przez Johana Gielisa. Formuła ta pozwala na odwzorowanie dowolnego kształtu za pomocą sześciu niezależnych parametrów.
EN
The aim of the work was to study the classifying possibilities of neural networks in the identification process of the wheat's, barley's and corn's kernel. Applied separation method depended on recognizing the shape differences of analysed objects. In order to identify the shape, and afterwards to encode the obtained empirical data into the training data sets the Johan Gielis's supershape formula was used. This formula permits for projection of any shape with a help of six independent parameters.
Pokazano wyniki symulacji neuronowej procesów mieszania niejednorodnych układów ziarnistych. Mieszano dwuskładnikowy układ ziarnisty przy pomocy statycznego mieszalnika płytkowego. Estymacji rozkładów koncentracji składnika kluczowego dokonywano w oparciu o predykcję sztucznej sieci neuronowej Flexible Bayesian Modeling o 20 ukrytych warstwach neuronów. Porównano statystycznie wyniki modelu empirycznego i predyktowanego. Określono współczynnik korelacji.
EN
The results of a neural network’s simulation of the mixing processes of non-homogenous granular systems were shown. A twocomponent granular system was mixed using a static plate mixer. Estimations of the key component’s concentration distribution were performed based on the artificial neural network’s prediction for the assumed numbers of neurons’ hidden layers. The empirical and the predicted results were statistically compared. A correlation coefficient was estimated between them.
W pracy pokazano skuteczność i przydatność modelowania neuronowego w procesie mieszania dwuskładnikowego niejednorodnego układu ziarnistego mieszanego systemem funnel-flow.
EN
In the study, an efficiency and usefulness of neural network was shown to model the mixing process of a two-components non-homogenous granular system during the funnel-flow mixing.
Dziedzina sztucznych sieci neuronowych ma swoje źródło w badaniach dotyczących sztucznej inteligencji. Stanowią one próbę naśladowania najważniejszych cech charakteryzujących biologiczne systemy nerwowe. Nazwą „sztuczne sieci neuronowe” (SSN) określa się dziś najczęściej symulatory programowe, umożliwiające modelowanie sieci na komputerach klasy PC. Sztuczne sieci neuronowe pozwalają na modelowanie systemów empirycznych o nieokreślonych zależnościach, trudnych do opisania tradycyjnymi, deterministycznymi metodami. Mają również zdolność generalizacji i uogólniania. Dzięki swym cechom SSN znajdują zastosowanie w rozwiązywaniu różnych problemów w wielu, niepowiązanych z sobą dziedzinach, jak: finanse, medycyna czy inżynieria rolnicza. Celowe jest więc wykonanie informatycznego systemu edukacyjnego, który pozwoli w łatwy i przystępny sposób zapoznać użytkownika z tematyką modelowania neuronowego.
EN
The domain of artificial neural networks has its own source in the research of artificial intelligence. Artificial neural networks (ANN) are trying to imitate the most important features which represent the biological nervous systems. Nowadays in most cases the name of “artificial neural networks” define as programming simulators which allows the modeling of networks on PC computers. ANN permits to modeling empirical systems which have indefinable relationships and are hard to present in a traditional deterministic methods. They have as well the ability to generalize. Owing to its features, ANN applies in resolving variety of problems in many totally different areas, like: finances, medicine or agricultural engineering. It is purposeful to prepare educational informatics system which allows a user to get closer to subjects of neural modeling in easy and accessible way.
W pracy analizuje się zagadnienie sterowania neuronowego ruchem nadążnym mobilnego robota Pioneer-2DX. Syntezę neuronowego algorytmu sterowania przeprowadzono na podstawie teorii stabilności Lapunowa. Przeprowadzono symulacje komputerowe z zastosowaniem pakietu Matlab/Simulink. Wyniki badań teoretycznych zostały zweryfikowane metodą szybkiego prototypowania z wykorzystaniem środowiska Matlab/Simulink i karty dSPACE.
EN
The problem of tracking control of wheeled mobile robot (WMR) using neural network is analyzed in the work. The synthesis of control systems using second Lapunov method was carried out. As a result of synthesis the stability of designed systems was proved. A large number of computer simulations for these control systems with using Matlab/Simulink package were executed. The results of theoretical tests were verified by rapid prototypical method. Rapid prototyping environment for Pioneer robot was based of Matlab/Simulink package and dSPACE board.
20
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W tekście przedstawiono możliwość wykorzystania sztucznych sieci neuronowych w układach sterowania napędem prądu przemiennego. W prezentowanym rozwiązaniu, opartym na strukturze z modelem odniesienia, neuronowy regulator prędkości silnika indukcyjnego, pracującego w układzie "naturalnej orientacji wektora pola", zmienia parametry w trakcie pracy, dostosowując się do obiektu sterowania. Zamieszczone wyniki badań ilustrują pracę układu.
EN
In this paper has been presented possibility of using artificial neural network in control of AC induction drive. Presented solution is based on reference model structure. Neural speed controller of Natural Field Oriented controlled AC drive changes parameters during operation, readjusting to controlled system. Attached researches results illustrate system work.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.