Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  modelowanie geomechaniczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono opracowaną metodykę oraz uzyskane wyniki modelowania umożliwiającego weryfikację potencjalnego wykorzystania określonych pakietów oprogramowania CMG (stanowiącego przykład komercyjnego symulatora złożowego) firmy Computer Modelling Group Ltd., jako narzędzia wspomagającego w symulacji i analizie zmian wybranych parametrów pracy podziemnego magazynu gazu w kawernie solnej. W ramach realizacji zadania, przy użyciu pakietu Builder, podjęto próbę budowy modelu statycznego komory magazynowej – jako podstawowego elementu modelu symulacyjnego. Modelowanie dynamiczne, przeprowadzone z wykorzystaniem pakietu IMEX, obejmowało prace skoncentrowane na symulacji konwergencji komory, jako parametrze mającym kluczowy wpływ na efektywność eksploatacji podziemnego magazynu gazu w kawernie solnej. Ze względu na duże rozmiary modelu statycznego zbudowanego w oparciu o rzeczywiste dane miąższości i wartości promienia ekwiwalentnego plastrów komory pochodzących z wykonanych pomiarów echometrycznych oraz ograniczeń systemowych oprogramowania, zdecydowano się na budowę uproszczonego (składającego się z mniejszej liczby komórek) modelu cylindrycznego – charakteryzującego się stałą wartością miąższości i promienia wyznaczonych plastrów. Przeprowadzona analiza możliwości symulacyjnych wykazała potrzebę utworzenia dodatkowego, wpisującego się w model cylindryczny „podmodelu”. Oznaczony w artykule jako model obliczeniowy, zbudowany na prostopadłościennej siatce „grid” stanowił podstawę dla stworzonego właściwego modelu geomechanicznego. Finalnie wykonanych zostało 24 symulacji obejmujących analizę 6 wybranych głębokości posadowienia stropu komory, po 4 warianty przyjętego minimalnego ciśnienia magazynowanego gazu. Otrzymane wyniki – wartości przemieszczenia ścian, stropu i spągu komory w kierunku jej środka – stanowiły element wyjściowy dla określenia wielkości zmiany objętości magazynowej kawerny. Następnie wyznaczone wartości konwergencji przeliczono dla modelu cylindrycznego jako końcowego modelu symulacyjnego. Dodatkowym elementem przeprowadzonych symulacji było określenie optymalnej głębokości posadowienia komory, którą wyznaczono na podstawie analizy zmian konwergencji i wielkości poduszki gazowej.
EN
The paper presents the developed methodology and the obtained results of modeling related to the verification of potential use of specific software packages from Computer Modeling Group Ltd. (commercial reservoir simulation software) as a support tool for simulation and analysis of changes in selected parameters of the underground gas store in a salt cavern. As a part of the task, with use of the Builder package, an attempt was made to build a static model of the salt cavern. Dynamic modeling (IMEX package) was focused on convergence as a parameter having a key impact on the efficiency of underground gas storage in the salt cavern. Due to the large size of the static model created based on original data (thickness and radius of equivalent chamber slices from echometric measurements) and restrictions of the software, it was decided to create a simplified cylindrical model (consisting of a smaller number of cells) characterized by constant values of thickness and radius of selected slices. Further analysis of the simulation possibilities led to the need to separate a calculation model – created on a rectangular grid for which the geomechanical model was created. In total, 24 simulations were made (six depths of the top level of cavern, four variants of the minimum required pressure of the stored gas). The values of walls, top and bottom layers’ movements towards the center determined the base to specify the size of the change in the storage volume. The convergence values were calculated for the cylindrical model as the final simulation model. In addition, the optimal cavern foundation depth was determined based on the analyses of convergence changes and the size of the gas cushion.
PL
W niniejszej pracy opracowano szereg związków między poszukiwaną cechą geomechaniczną, w tym parametrami sprężystymi – modułem Younga (E) i współczynnikiem Poissona (ʋ) oraz parametrami wytrzymałościowymi – wytrzymałością na ściskanie jednoosiowe (UCS) oraz stałą Biota (α), a cechami ośrodka, które najczęściej są standardowo mierzone lub szacowane dla większości obiektów złożowych. Cel pracy realizowano na obiekcie o potencjale węglowodorowym, w którym przedmiotem zainteresowania był interwał osadów dolnego paleozoiku, zdeponowanych w północnej części basenu bałtyckiego na obszarze koncesji Wejherowo. Do opracowania związków między poszukiwaną właściwością geomechaniczną ośrodka skalnego a innymi, standardowo mierzonymi lub interpretowanymi cechami fizycznymi skały zastosowano sztuczne sieci neuronowe z użyciem algorytmu wstecznej propagacji błędów (ang. back propagation). Algorytm wstecznej propagacji był wykorzystywany w środowisku oprogramowania Petrel (Schlumberger).
EN
In this work, a number of relationships were found between the geomechanical properties, including elastic moduli – Young’s modulus (E) and Poisson’s ratio (ʋ) and strength properties – uniaxial compression strength (UCS) and Biot’s coefficient (α), and commonly measured and interpreted properties, fitting in a standard exploration of the reservoir rock. For this purpose, the shale formation of lower Paleozoic age deposited in the northern part of the Baltic Basin were investigated. An artificial neural network using back propagation algorithm, was used to develop the relationship between the geomechanical properties and other, more commonly measured or interpreted physical properties of rocks.
PL
Złoża typu niekonwencjonalnego wymagają nowego podejścia na każdym poziomie pracy z obiektem złożowym, począwszy od fazy rozpoznania formacji złożowej, przez zaprojektowanie otworu wiertniczego i procesu wiercenia, po uzbrojenie odwiertu, w tym zabiegi udostępnienia złoża. Te ostatnie stanowią technologiczny proces hydraulicznego szczelinowania, mający na celu wygenerowanie sieci połączonych ze sobą szczelin, umożliwiających przepływ dotychczas uwięzionych węglowodorów. Na każdym z powyższych etapów istotne jest rozpoznanie własności mechanicznych formacji gazo- lub roponośnej. Znajomość parametrów geomechanicznych umożliwia między innymi zaprojektowanie właściwego kierunku horyzontalnego odcinka otworu, zabiegów udostępnienia złoża, a także uniknięcie wielu problemów technicznych podczas procesu wiercenia, co bezpośrednio przekłada się na jego czas i koszty. W pracy zaprezentowano model geomechaniczny dla obiektu syntetycznego, pozwalający na analizę wielu procesów zachodzących na skutek eksploatacji węglowodorów. Szczególną uwagę poświęcono zmianom w rozkładzie naprężeń będących efektem postępującej produkcji, a także ich konsekwencjom przy projektowaniu wtórnych zabiegów udostępniania złóż niekonwencjonalnych.
EN
Unconventional reservoirs require a new approach at every level of their operation, starting from the exploration of the reservoir formation, through the design of the borehole and the drilling process and ending with the development of the reservoir including treatments like hydraulic fracturing. At each of these stages it is important to identify the mechanical properties of hydrocarbon bearing formations. With the knowledge of the geomechanical parameters, among others, it is possible to design the proper direction of the horizontal section of the borehole, reservoir development treatments and to avoid many technical problems during the drilling process, which directly translates into time and cost of drilling. The paper presents a geomechanical model of a synthetic object allowing for the analysis of many processes occurring as a result of exploitation of hydrocarbons. Particular attention was paid to changes in stress distribution resulting from ongoing production as well as their consequences for the design of secondary development treatments of unconventional formations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.