Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  modelling dynamics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The design of an interval observer for estimation of unmeasured state variables with application to drinking water distribution systems is described. In particular, the design process of such an observer is considered for estimation of the water quality described by the concentration of free chlorine. The interval observer is derived to produce the robust interval bounds on the estimated water quality state variables. The stability and robustness of the interval observer are investigated under uncertainty in system dynamics, inputs, initial conditions and measurement errors. The bounds on the estimated variables are generated by solving two systems of first-order ordinary differential equations. For that reason, despite a large scale of the systems, the numerical efficiency is sufficient for the on-line monitoring of the water quality. Finally, in order to validate the performance of the observer, it is applied to the model of a real water distribution network.
2
Content available Forty-Five Years of the Rigid Finite Element Method
EN
The Rigid Finite Element Method (RFEM) is an original Polish method for modelling dynamics of complex mechanical systems with flexible elements. Its origin dates back to the sixties of the last century. The idea of the Rigid Finite Element Method, inseparably connected with Professor Jan Kruszewski-Majewski from Gdansk University of Technology.
EN
This paper describes the design of an interval observer for the estimation of unmeasured quality state variables in drinking water distribution systems. The estimator utilizes a set bounded model of uncertainty to produce robust interval bounds on the estimated state variables of the water quality. The bounds are generated by solving two differential equations. Hence the numerical efficiency is sufficient for on-line monitoring of the water quality. The observer is applied to an exemplary water network and its performance is validated by simulations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.