Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  model płuca
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
A design principle, construction and results of preliminary tests of a new hybrid physical-electrical model of lungs mechanics has been presented, The methods leading to development of lungs models of different complexity have been also included. The basic component of the model is a voltage controlled Bow source build up with a piston ~ cylinder system driven by a servomotor. This is used to develop a functional module playing a role of an impedance converter transforming an input electrical impedance Z0 of any electrical network connected to its electrical terminals into a pneumatic impedance Zin. Static and dynamic characteristics of the model connected to different pneumatic signal sources have been presented i.e. for the model connected with the respirator (expiration by the respiratory valve) and for the model with free unobstructed expiration. The very good dynamic features (time constant of the piston Bow source less than 1 ms) and a small resultant error of impedance conversion (less than 1%) enable the model to be applied in many application especially when new methods of lung ventilation are developed.
2
Content available remote A hybrid model of the respiratory system
EN
The aim of this work is building a hybrid model of the human respiratory system which enables connecting the real clinical devices (respirators) with the computerized virtual lungs. A simulation of the artificial ventilation of lungs, with the use of the hybrid model and the Siemens Servo 900 respirator, was made. Waveforms of pressure inside the lungs, flow in the respiratory tract, and the lung volume during the simulated artificial ventilation were recorded. The compliance and resistance of the hybrid model of the respiratory system were calculated on the basis of the inspiratory pause algorithms and compared to the values set in the model. The initial tests have shown that the calculated values of the parameters differ by 20% (worst result) from the values set in the model. The model will enable the investigation of the different modes of lung ventilation, as well as educational presentation of the respirator-patient interaction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.