Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mode II fracture
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The old-new concrete interface is the weakest part in the composite structure, and there are a large number of microcracks on the interface. In order to study the mode II fracture performance of the bonding surface of old-new concrete, the effect of planting rebar and basalt fiber is investigated. Nine Z-shaped old-new concrete composite specimens with initial cracks are made. Nine shear fracture load-displacement curves are obtained, and the failure process and interface fracture are discussed. On this basis, the mode II fracture toughness and fracture energy are obtained. The regression equations for fracture toughness and fracture energy are deduced with analysis of variance (ANOVA). The results show that fracture toughness and fracture energy increase with the increase of planting rebar number and basalt fiber content. With the increase of the planting rebar number, mode II fracture toughness and fracture energy increase more significantly. Planting rebar is the major factor for mode II fracture performance.
EN
Purpose: Carefully investigate the stress-strain state of the side grooved I-beam specimen with edge crack and determine the effect of crack length and crack faces friction on stress intensity factor at transverse shear. Design/methodology/approach: The finite element method was used to estimate the stress-strain state of I-beam specimen at transverse shear. For this purpose, a fullscale, three-dimensional model of the specimen was created, which precisely reproduces its geometry and fatigue crack faces contact. For the correct reproduction of the stress singularity at the crack tip, a special sub-model was used, which has been tested earlier in solving similar problems of fracture mechanics. In order to improve the accuracy of the calculations, for crack plane and cross-section of the specimen on the crack extension modeling, an algorithm for changing the crack length without changing the total number of elements in the model was developed and applied. Young's modulus and Poisson's ratio of structural steels were specified for the model material. The static loading of the model was realized assuming small scale yielding condition. The stress intensity factor was found through the displacement of nodes in the prismatic elements adjacent to the plane and the front of the crack. Findings: Mathematical dependences, which show an increase of stress intensity factor in the I-beam specimen with an increase in the crack length, and its decrease with an increase of crack faces friction factor at transverse shear, were established. The results are compared with the partial cases known from the literature and their good convergence was shown. Research limitations/implications: By analyzing the obtained graphical dependences, it is established that for relative crack lengths less than 0.4 there is a significant influence of the initial notch on the stress-strain state of the specimen, and for the lengths greater than 0.9 an influence of constrained gripping part took place. For this reason, all subsequent calculations were carried out in the range of relative crack length from 0.4 to 0.9, which represents the applicability range of the final calculation formula. Increasing of the crack faces friction factor from 0 to 1 monotonically reduces the stress at the crack tip. For a short crack, this effect is 1.5 times greater than for a long one, which is reflected by the calculation formula. Practical implications: Using the proposed calculation formula, one can calculate the stress intensity factor in the I-beam specimen, and to determine the crack growth resistance characteristics of structural steels at transverse shear. Originality/value: A new, easy-to-use in engineering calculations formula is proposed for stress intensity factor determination in the I-beam specimen at transverse shear. The formula takes into account crack faces friction for various crack lengths.
EN
The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.
PL
W niniejszej pracy przedstawiono właściwości mechaniczne pękania materiałów skalnych pod półsymetrycznym obciążeniem, w wyniku połączenia analizy teoretycznej, symulacji numerycznych oraz badań eksperymentalnych. W celu ujawnienia mechanizmu uszkodzenia, przygotowano trzy rodzaje próbek z karbem pod półsymetrycznym obciążeniem i zbadano rozkład naprężeń wokół pęknięcia podczas procesu obciążenia. Przyjęto metodę integralnej interakcji oprogramowania elementów skończonych ANSYS w celu obliczenia współczynnika intensywności naprężenia (SIF). Ponadto, wprowadzono pojedynczy element pęknięcia oraz element płaszczyzny 183 w strefie bez pęknięć. Zgodnie z analizą numeryczną i wynikami badań eksperymentalnych, maksymalne naprężenie rozciągające podwójnych próbek z karbem okazało się znacznie większe niż w przypadku pojedynczych próbek z karbem, a ich maksymalne naprężenie ścinające było prawie takie samo, co oznacza, że pojedyncze próbki z karbem były bardziej podatne na pęknięcie w trybie II. Współczynniki intensywności KII środkowych próbek z karbem były bardzo niskie w porównaniu z innymi próbkami oraz tymi, które wywoływały pęknięcia w trybie I. Zarówno w przypadku próbek z podwójnym i pojedynczym karbem, KII zostało utrzymane na stałym poziomie i nie uległo zmianie wraz ze zmianą a/h, a ponadto KII było znacznie większe niż KI. KII może potencjalnie osiągać odporność na kruche pękanie KIIC przed KI. W rezultacie mamy do czynienia z pęknięciami w trybie II. Wprowadzono materiały skalne w celu wytworzenia próbek z pojedynczym karbem. Pęknięcie rozpoczęło się na samej górze i rozprzestrzeniało się wzdłuż pierwotnej powierzchni karbu, w wyniku czego wystąpiło pęknięcie w trybie II. Nie zaobserwowano zależności pomiędzy szczytowym obciążeniem i oryginalną długością karbu. Średnia wartość KIIC była około 3,8 razy większa niż wartość KIC. Pęknięcia w górnej części były znacznie większe niż w innym miejscu, co oznacza, że koncentracja naprężeń pęknięcia w górnej części była oczywista, co z kolei może prowadzić do pęknięcia. Kąt maksymalnego głównego naprężenia wyniósł około 30°, co było zgodne z pęknięciem w trybie I w warunkach czystego obciążenia ścinającego. Badanie półsymetrycznego obciążenia próbek z pojedynczym karbem okazało się być jedną z najskuteczniejszych metod uzyskiwania prawdziwego pęknięcia w trybie II i określenia odporności na kruche pękanie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.