Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mineral carbonation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedstawiono wyniki mineralnej karbonatyzacji popiołu wysokowapniowego, pochodzącego z jednej z polskich elektrowni. Eksperyment przeprowadzono w skali laboratoryjnej w zakresie temp. 298-343 K i ciśnienia 0,4-1,5 MPa. Ilość pochłoniętego ditlenku węgla wzrastała ze wzrostem ciśnienia. Potwierdzono możliwość wykorzystania popiołu ze spalania węgla jako materiału do utylizacji ditlenku węgla.
EN
Fly ash from combustion of lignite in a Polish power plant was carbonated with CO₂ under lab. conditions at 298-343 K and under 0.4-1.5 MPa. The CO₂ uptake increased with increasing pressure. Both phys. adsorption of CO₂ and chem. reaction with the fly ash were obsd.
2
EN
The fixation of CO2 in the form of inorganic carbonates, also known as mineral carbonation, is an interesting option for the removal of carbon dioxide from various gas streams. The captured CO2 is reacted with metal-oxide bearing materials, usually naturally occurring minerals. The alkaline industrial waste, such as fly ash can also be considered as a source of calcium or magnesium. In the present study the solubility of fly ash from conventional pulverised hard coal fired boilers, with and without desulphurisation products, and fly ash from lignite fluidised bed combustion, generated by Polish power stations was analysed. The principal objective was to assess the potential of fly ash used as a reactant in the process of mineral carbonation. Experimental were done in a 1 dm 3 reactor equipped with a heating jacket and a stirrer. The rate of dissolution in water and in acid solutions was measured at various temperatures (20 – 80ºC), waste-to-solvent ratios (1:100 – 1:4) and stirrer speeds (300 – 1100 min -1). Results clearly show that fluidised lignite fly ash has the highest potential for carbonation due to its high content of free CaO and fast kinetics of dissolution, and can be employed in mineral carbonation of CO2.
EN
Mineral carbonation is one of the mitigation strategies considered for reducing atmospheric CO2 concentrations. The reuse of industrial solid wastes and residues (e.g. waste building material, including cement – which readily sequester CO2 at ambient temperatures and pressures) is often taken into consideration. The main barrier to the use of mineral carbonation is the rather slow reaction progress. Based on a literature review it has been hypothesized, that knowledge of the reaction energy of formation and disintegration of carbonate phases is needed, and differential scanning calorimetry (DSC) measurement method could be used to obtain thermodynamic data of the mineral carbonation process.
PL
Mineralna karbonatyzacja jest jedną z wielu rozważanych metod, zmierzających do ograniczenia stężenia CO2 w atmosferze. Odpowiednim do wykorzystania w tym procesie materiałem wydają się odpady przemysłowe (np. gruz budowlany, zawierający cement, który łatwo sekwestruje CO2 w warunkach atmosferycznych). Główną barierą w stosowaniu na szerszą skalę tego rodzaju sekwestracji jest powolny postęp reakcji. Analiza literaturowa wskazuje na istniejące braki dotyczące energii reakcji tworzenia i rozpadu faz węglanowych (szczególnie – entalpii ΔH) w zależności od warunków procesu. W artykule wskazano na możliwość zastosowania skaningowej kalorymetrii różnicowej (DSC) do wyznaczenia danych termodynamicznych procesu karbonatyzacji materiału cementowego.
4
Content available Mineral carbonation of metallurgical slags
EN
Due to increasing emissions of greenhouse gases into the atmosphere number of methods are being proposed to mitigate the risk of climate change. One of them is mineral carbonation. Blast furnace and steel making slags are co-products of metallurgical processes composed of minerals which represent appropriate source of cations required for mineral carbonation. Experimental studies were performed to determine the potential use of slags in this process. Obtained results indicate that steel making slag can be a useful material in CO2 capture procedures. Slag components dissolved in water are bonded as stable carbonates in the reaction with CO2 from ambient air. In case of blast furnace slag, the reaction is very slow and minerals are resistant to chemical changes. More time is needed for minerals dissolution and release of cations essential for carbonate crystallisation and thus makes blast furnace slags less favourable in comparison with steel making slag.
PL
Polska energetyka zawodowa jako paliwo podstawowe stosuje węgiel kamienny i brunatny, branża ta jest zarazem największym emitentem CO2 w Polsce. W wyniku procesów produkcji energii elektrycznej i cieplnej powstają również odpady, m.in. popioły lotne, które w formie zawiesin mogą być stosowane do sekwestracji CO2 na drodze mineralnej karbonatyzacji. Mineralna karbonatyzacja jako metoda obniżenia redukcji CO2 jest szczególnie interesująca przy wykorzystaniu odpadów. W artykule przedstawiono wstępne oszacowanie możliwości obniżenia emisji CO2 z energetyki zawodowej. Oszacowanie to przeprowadzono przy wykorzystaniu wyników badań stopnia pochłaniania CO2 przez zawiesiny odpadowo-wodne oraz wielkość emisji ze spalania węgla w energetyce zawodowej. Do szacowania uwzględniono jedynie te odpady, które nie wymagają żadnej obróbki wstępnej, a zarazem mają potencjał dla wiązania CO2, czyli: popioły lotne z kotłów konwencjonalnych, popioły z kotłów fluidalnych, mieszaniny popiołów z produktami odsiarczania, popioły lotne ze współspalania węgla kamiennego i biomasy oraz odpady z półsuchej metody odsiarczania. Przyjęto również założenie, że do sekwestracji mogą być stosowane te odpady, które są wykorzystywane w górnictwie oraz odpady niewykorzystane gospodarczo. Oszacowano, że ilości CO2, które można zutylizować przy powyższych założeniach wynoszą około 117,25 Gg CO2/rok.
EN
Polish power industry uses coal or lignite as basic fuels. That is why this industry is the biggest emitter of CO2 in the country. As a result of electricity and heat production appears some waste – fly ash, which while in the state of suspension can be used for CO2 sequestration by mineral carbonization. The mineral carbonization as a method to lower the reduction of CO2 is especially interesting while using the waste. The article presents the estimation of lowering the CO2 emission in the power industry with the use of water suspensions of energy waste. The results of researches on the level of CO2 absorption by the waste-water suspension and emission from coal burning in the energy industry were used to conduct the estimation. Only the wastes which do not need the pre-treatment but have the potential to bind CO2 were taken into consideration, that means: fly ash from the conventional boilers, ash from fluidal boilers, mixtures of ash and desulphurization products, fly ash from co-combustion of coal and biomass and waste from half-dry method of desulphurization. It was assumed that the sequestration may be conducted with the use of waste used in mining and waste which are commercially unexploited. It was estimated that this way about 117.25 Gg CO2/year of CO2 can be utilized every year.
PL
Do badań stopnia sekwestracji ditlenku węgla wykorzystano wybrane odpady energetyczne charakteryzujące się wysoką zawartością CaO i wolnego CaO, tj.: popioły ze spalania węgla kamiennego i węgla brunatnego w kotłach konwencjonalnych, popioły ze spalania węgla kamiennego i brunatnego w kotłach fluidalnych, mieszaniny popiołów lotnych i odpadów stałych z wapniowych metod odsiarczania gazów odlotowych oraz odpady z odsiarczania metodą półsucha. Z przeprowadzonych badań wynika, że: 1. Wybrane odpady energetyczne są potencjalnie interesującym materiałem do wiązania CO2 na drodze mineralnej karbonatyzacji. 2. Maksymalnymi teoretycznymi pojemnościami związania CO2, obliczonymi za pomocą wzoru Steinoura, charakteryzują się: odpady z półsuchej metody odsiarczania z El. Siersza (34,93%), mieszanina popiołów lotnych z odpadami z odsiarczania z El. Rybnik (19,94%), natomiast najmniejszymi: popiół lotny ze spalania węgla kamiennego w Ec. Lublin (5,58%) i popiół fluidalny ze spalania węgla kamiennego w El. Jaworzno (7,62%). 3. Najwyższą zawartość kalcytu stwierdzono w zawiesinie z popiołem ze spalania węgla brunatnego w El. Pątnów (11,36%), a najniższą w zawiesinach z mieszaniną popiołów lotnych z odpadami z odsiarczania z El. Rybnik (0,38%). 4. Na bazie uzyskanych zawartości kalcytu, obliczono stopień karbonatyzacji dla badanych zawiesin. Najwyższy stopień związania CO2 stwierdzono dla zawiesin wodnych z popiołami lotnymi ze spalania węgla brunatnego w El. Pątnów (12,82%), a najniższy dla zawiesin z mieszaniną popiołów lotnych z odpadami z odsiarczania z El. Rybnik (0,43%). 5. Uwzględniając istotny aspekt przy analizie wykorzystania odpadów energetycznych do procesów mineralnej karbonatyzacji, jakim jest wpływ CO2 na zmianę pH i wymywalność zanieczyszczeń należy stwierdzić, że w przypadku zawiesin wodnych badanych odpadów energetycznych występuje redukcja wartości pH z 12÷13 do 8÷9 oraz obniżenie wymywalności niektórych pierwiastków ciężkich, takich jak: Cr, Pb, Zn, As i Cu.
EN
Mineral carbonation using energy waste may be an interesting option in the CCS technology. Taking into consideration the fact that the power industry is the biggest producer of carbon dioxide and at the same time of waste which may potentially be used to bind CO2, mineral sequestration can be an interesting option as the last stage of the CCS technology. Mineral sequestration using energetic waste is most often carried out as direct carbonation of aqueous waste suspensions - CO2. The article presents possible applications of chosen energetic waste in CO2 binding based on earlier research carried out by the authors. The paper describes suspension carbonation for waste such as: ashes from conventional boilers and fluidized beds from the combustion of bituminous and lignite coal, mixes of fly ashes with the products of semidry methods of flue gases' desulphurization, as well as waste from semidry methods of flue gases' desulphurization. All the kinds of waste presented in the article were characterized by a high content of CaO (between 5 and 50%) and free CaO (between 1 and 10%). The main product of carbonation in the studied suspensions was calcite. The content of calcite in the suspensions and the degree of carbonation (CO2 binding) was calculated based on thermogravimetric research. The highest degree of carbonation was found in suspensions containing ashes from the combustion of lignite coal in conventional boilers in the Pątnów power plant and the lowest degree in suspensions including mixes of fly ashes with waste from desulphurization in the Rybnik power plant. Mineral sequestration was not only presented by means of the degree of carbonation (CO2 binding), but also through the influence of CO2 on the phase composition of the studied aqueous waste suspensions. The influence of CO2 on waste leaching and on pH changes in aqueous waste suspensions was also pre-sented shortly. The basic carbonation reaction which results in the creation of calcite causes a lowering of pH. In the studied case of aqueous suspensions of energy waste it is a reduction of pH value from 12-13 to ca. 8-9. The carbonation process therefore causes a decrease in the leaching of some pollutants, which is described shortly in the paper. Because of this, mineral carbonation may be suggested as a method of some energy waste processing aimed at decreasing its leaching for later economic applications.
PL
Wiązanie CO2 w zawiesinach odpadowo-wodnych przez mineralną karbonatyzację jest jedną z metod ograniczania emisji dwutlenku węgla. Mineralna karbonatyzacja (mineralna sekwestracja) CO2 w zawiesinach popiołowo-wodnych jest procesem złożonym. Na podstawie badań pochłaniania CO2 przez zawiesiny wodne popiołów fluidalnych z Elektrociepłowni Tychy SA opracowano model kinetyczny sekwestracji dwutlenku węgla. Model ten, opisujący kinetykę sekwestracji CO2, jest próbą określenia szybkości reakcji zachodzących w poszczególnych etapach sekwestracji dwutlenku węgla, prowadzących do jego trwałego związania i utworzenia stabilnych, w założonych warunkach, produktów. Skład fazowy zawiesin popiołowo-wodnych, ich współzależność w stanach równowagowych przy wprowadzaniu CO2 pozwala na postawienie tezy, że wyniki badań popiołów lotnych z Elektrociepłowni Tychy SA będzie można odnieść do innych odpadów przemysłowych (popiołów lotnych, odpadów z suchego i półsuchego odsiarczania spalin, żużli hutniczych, pyłów z instalacji pieców cementowych), w których występują takie same lub podobne składy fazowe.
EN
Binding of CO2 by mineral carbonation in aqueous waste suspensions is a method of reducing the emissions of carbon dioxide. Mineral carbonation (mineral sequestration) of CO2 in aqueous ash suspensions is a complex process. Research on CO2 absorption in aqueous suspensions of fluidized ashes from a heat and power plant in Tychy served as a base to prepare a kinetic model of carbon dioxide sequestration. The model, which shows the kinetics of CO2 sequestration, is an attempt at determining the speed of reactions taking place at each stage of carbon dioxide sequestration, leading towards its permanent binding and the creation of products which are stable in the assumed conditions. The phase composition of aqueous ash solutions and their interdependence on each other in equilibrium conditions on introducing CO2 makes it possible to argue that the results of research on fly ashes in the Tychy power plant may be transferred to other industrial waste (fly ashes, waste from dry and semi-dry desulphurization of flue gases, steel slag, cement kilns dusts), where the same or similar phase compositions appear.
PL
Przedstawiono wyniki badań rozpuszczalności talku w roztworach kwasu octowego, siarkowego i chlorku amonu. Badania wykonano dla zmiennych wartości temperatury, prędkości obrotowej mieszadła i stężenia rozpuszczalnika. Stopień ekstrakcji magnezu z minerału do roztworu po ok. 4 godzinach prowadzenia procesu wynosił od 0,4% (woda) do 5-6% (kwas siarkowy). Otrzymane w badaniach wartości stopnia ekstrakcji jonów magnezu są niewystarczające z punktu widzenia możliwości wykorzystania talku w procesie mineralnej karbonatyzacji.
EN
The results of experimental study on natural talc dissolution are presented in the paper. The investigations were made for acetic acid, sulfuric acid and ammonium chloride solutions at different values of temperature, mixing velocity and solvent concentration. After 4 hours of mixing the fraction of extraction of magnesium ions was equal to 0.4% in water and 5-6% in sulfuric acid. The values of extraction obtained are insufficient for mineral carbonation process.
PL
Praca dotyczy procesu umożliwiającego składowanie ditlenku węgła w postaci nieorganicznych węglanów (sekwestracja poprzez karbonatyzację minerałów); produktom ubocznym procesu jest krzemionka. Metoda karbonatyzacji, w odróżnieniu od sekwestracji bezpośredniej, umożliwia składowanie trwałe; wykorzystanie procesu dwustopniowego i jego przyspieszenie poprzez zastosowanie kwasów karboksylo-wych obniża przy tym koszty sekwestracji.
EN
This paper describes the process of fixation of CO., in the form of inorganic carbonates (called as mineral sequestration or mineral carbonation) with solid by-product (silica), revealing storage capacity on a geological time scale. The products are similar to naturally occurring in the process of weathering. Costs of direct mineral sequestration are too high and can be reduced by using two-step process employing car-boxylic acids as additives enhancing the reaction rate.
PL
Zwiększona emisja CO2 oraz jego negatywny wpływ na zmiany klimatyczne spowodowały intensyfikację badań dotyczących sekwestracji, czyli wychwytywania i utylizacji ditlenku węgla. Jedną z metod utylizacji CO2 jest jego wiązanie na drodze mineralnej karbonatyzacji. Metoda ta polega na wiązaniu CO2 w minerałach naturalnych lub odpadach. Jest to metoda bezpieczna ekologicznie, ponieważ C02 jest trwale wiązany, a powstałe w wyniku reakcji węglany nie mają negatywnego wpływu na środowisko naturalne. Mineralna karbonatyzacja może być przeprowadzana metodą bezpośrednią, w której minerał lub odpad poddawany jest bezpośrednio karbonatyzacji lub pośrednią, w której składniki reaktywne są wstępnie ekstrahowane z matrycy mineralnej, a następnie poddawane reakcji z CO2. Mineralna karbonatyzacja jest interesującą opcją dla redukcji CO2 przy zastosowaniu odpadów, szczególnie tych, które powstają u znaczących emitentów ditlenku węgla. Odpady mają tę przewagę nad stosowaniem surowców naturalnych do wiązania CO2, że nie ponosi się kosztów związanych z ich pozyskaniem. Dodatkową zaletą stosowania odpadów jest fakt, że karbonatyzacja przy ich zastosowaniu jest procesem szybszym niż w przypadku zastosowania naturalnych minerałów. Do wiązania CO2 mogą być stosowane stałe nieorganiczne odpady alkaliczne zawierające CaO i MgO w formie, która może reagować z CO2. Odpadami, takimi są m.in. żużle z hutnictwa żelaza i stali, które stanowią potencjalny materiał do sekwestracji ditlenku węgla na drodze mineralncj karbonatyzacji. Obecnie większość badań dotycząca mineralnej karbonatyzacji przy zastosowaniu żużli hutniczych skierowana jest na opracowanie metody sekwestracji, która byłaby jak najmniej energochłonna i pozwalałaby na gospodarcze wykorzystanie produktów reakcji z CO2. Jednym z najbardziej obiecujących kierunków badań jest określenie możliwości zastosowania mineralnej karbonatyzacji do wytwarzania węglanu wapnia z żużli za pomocą kwasu octowego. W artykule omówiono przegląd opracowanych dotąd możliwości i metod wiązania CO2 przez żużle z hutnictwa żelaza i stali na drodze mineralnej karbonatyzacji bezpośredniej i pośredniej.
EN
The increasing CO2 emission and its negative impact on climate changes has led to the intensification of researches on sequestration, i.e. capture and utilization of carbon dioxide. One of CO2 utilization methods is its bonding via mineral carbonation. This method rests on bonding of CO2 in natural minerals or wastes. It is an ecologically safe method as CO2 is permanently bonded, and carbonates originating in the reaction do not influence negatively natural environment. Mineral carbonation may be carried out via direct method with the minerals or wastes undergoing direct carbonation or indirect, with the reactive components pre-extracted from mineral matrix, and then treated with CO2. Mineral carbonation is an interesting option to reduce CO2 by using wastes, in particular, those produced by significant emissioners of carbon dioxide. When the wastes are employed in mineral carbonation, they are used economically. The advantage of wastes usage for CO2 bonding over natural resources is that there are not any costs involved with their acquisition. An additional advantage of wastes usage is the fact that carbonation becomes a faster process compared with natural resources use. For CO2 bonding the permanent inorganic alkaline wastes containing CaO and MgO can be used, in the form which reacts with CO2. Such types of wastes include among others slags from iron and steel industry, which constitute potential material for carbon dioxide sequestration via mineral carbonation. Nowadays, most of researches on mineral carbonation with the use of metallurgical slags are aimed at elaborating a sequestration method which is least power-consuming and allows economic usage of CO2 reaction products. One of the most promising research directions is determination of possibilities of mineral carbonation use for calcium carbonate production from steel slags with the employment of acetic acid. In the article, there has been presented a review of possibilities and methods, worked out up to the present moment, of CO2 bonding through slags from iron and steel industry via direct and indirect mineral carbonation.
11
Content available remote Waste used for CO2 bonding via mineral carbonation
EN
CO2 sequestration via mineral carbonation is an ecologically safe way of its utilization. Owing to the processes occurring whilst mineral carbonation, CO2 is strongly bonded and stable thermodynamic products come into being, neutral to the environment, in the form of carbonates, that exist naturally in the environment. For CO2 bonding the following natural resources may be employed: olivine as well as mineral waste. The examples of CO2 sequestration by means of mineral carbonation with the application of varied mineral waste have been presented in the article.
PL
Sekwestracja CO2 na drodze mineralnej karbonatyzacji jest bezpiecznym ekologicznie sposobem jego utylizacji. W wyniku procesów zachodzących na drodze mineralnej karbonatyzacji CO2 jest trwale wiązany i powstają termodynamicznie stabilne produkty, obojętne dla środowiska w postaci węglanów naturalnie występujących w środowisku. Do wiązania CO2 mogą być stosowane surowce naturalne takie jak np. oliwiny, ale również odpady mineralne. W artykule przedstawiono przykłady sekwestracji CO2 na drodze mineralnej karbonatyzacji przy zastosowaniu różnych odpadów mineralnych.
12
Content available remote Utylizacja ditlenku węgla poprzez mineralną karbonatyzację
PL
Jednym z najważniejszych zagadnień związanych z szeroko pojętą ochroną środowiska jest ograniczenie emisji CO2. Zobowiązanie zmniejszenia emisji gazów cieplarnianych nakłada na Polskę protokół z Kyoto. Sekwestracja (działania związane z ograniczeniem emisji CO2) wymaga najpierw oddzielenia CO2 ze strumienia gazów odlotowych (SEPARATION) i jego wychwytu (CAPTURE). Jedną z możliwości sekwestracji CO2 jest mineralna karbonatyzacja. Mineralna karbonatyzacja polega na reakcji dwutlenku węgla z minerałami takimi jak np.: oliwin, serpentyn lub odpadami takimi jak np.: popioły lotne. W wyniku mineralnej karbonatyzacji dwutlenek węgla jest trwale wiązany. W artykule zostały krótko omówione metody oddzielania i wychwytu CO2 oraz rodzaje mineralnej karbonatyzacji.
EN
The limitation of carbon dioxide emission is one of the most important problems connected with broadly understood environmental protection. The Kyoto Protocol obligates countries to decrease the emission of greenhouse gases of about 5% below the emission level in 1990 year, in period from 2008 to 2012. Sequestration (activities connected with limitation of CO2 emission) requires, first of all, CO2 capture and separation from the flue gas. Mineral carbonation is one of the possibilities of CO2 sequestration. Mineral carbonation consists in CO2 reaction with minerals (e.g. oliwine or serpentynite) or wastes (e.g. fly ashes). Carbon dioxide is stable bonded as a result of the mineral carbonation process. Carbon dioxide separation and capture methods, as well as types of mineral carbonation are presented in this article.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.