Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  min-max regret problem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper addresses a class of problems under interval data uncertainty, composed of min-max regret generalisations of classical 0-1 optimisation problems with interval costs. These problems are called robust-hard when their classical counterparts are already NP-hard. The state-of-the-art exact algorithms for interval 0-1 min-max regret problems in general work by solving a corresponding mixed- -integer linear programming formulation in a Benders’ decomposition fashion. Each of the possibly exponentially many Benders’ cuts is separated on the fly by the resolution of an instance of the classical 0-1 optimisation problem counterpart. Since these separation subproblems may be NP-hard, not all of them can be easily modelled using linear programming (LP), unless P equals NP. In this work, we formally describe these algorithms through a logic-based Benders’ decomposition framework and assess the impact of three warm-start procedures. These procedures work by providing promising initial cuts and primal bounds through the resolution of a linearly relaxed model and an LP-based heuristic. Extensive computational experiments in solving two challenging robust-hard problems indicate that these procedures can highly improve the quality of the bounds obtained by the Benders’ framework within a limited execution time. Moreover, the simplicity and effectiveness of these speed-up procedures make them an easily reproducible option when dealing with interval 0-1 min-max regret problems in general, especially the more challenging subclass of robust-hard problems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.