Omówiono procedurę szacowania niepewności pomiaru oraz istotne elementy współczesnego podejścia do szacowania niepewności. Wyjaśniono pojęcie rozdzielczości przyrządów ze wskazaniem analogowym i cyfrowym. Podano najczęściej stosowane rozkłady jako modele błędów pomiaru. Na przykładzie odchyłki długości płytki wzorcowej uzasadniono wykorzystanie rozkładów antymodalnych.
EN
Procedure of uncertainty evaluation is described. Important issues of up-to-date approach to uncertainty evaluation are explained. The term resolution of analogue and digital indication measuring instruments is explained. The probability distributions most often used for error modelling are given. On the example of gauge block length deviation the reasons for using antimodal distributions are explained.
W artykule przedstawiono obliczenia niepewności rozszerzonej metodą numeryczną i analityczną. Obie metody umożliwiają wyznaczanie niepewności zgodnie z przyjętą definicją przedziału rozszerzenia zawartą w najnowszym dokumencie normatywnym. Metoda numeryczna polega na symulacji Monte Carlo, a metoda analityczna bazuje na przybliżeniu operacji splotu rozkładów wielkości wejściowych, poprzez model matematyczny dla wielkości wyjściowej. Obie metody prowadzą do tego samego rezultatu obliczeniowego i można jej realizować przy użyciu arkusza kalkulacyjnego. Metody zilustrowano przykładem dotyczącym opracowania wyniku pomiaru przy wzorcowaniu przyrządu pomiarowego, w postaci mikrometru.
EN
The article presents calculation of measurement uncertainty with the use of the numerical method and the analytical approach. Both methods enable evaluation of uncertainty according to the definition of the coverage interval contained in a recent normative document. Numerical method is based on the Monte Carlo simulation and the analytical method makes use of an approximation of the convolution of distributions of input quantities by making a mathematical model of the output quantity. Both methods lead to the same numerical results and may be implemented with the use of spreadsheet software. Both methods are exemplified by evaluation of uncertainty in calibration of a measuring instrument, such as a micrometer.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Unikalny w swoim rodzaju optyczny czujnik mikroodchyleń jest nowatorskim rozwiązaniem firmy SICK łączącym funkcje przyrządu pomiarowego i czujnika zbliżeniowego. Zespół jego cech pozwala na spojrzenie z nowej perspektywy na problematykę zautomatyzowania bezdotykowych, precyzyjnych pomiarów odległości, wymiarów, położenia i ich odchyleń.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.