Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mieszanina gazów
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł dotyczy matematycznego modelu mieszaniny wodoru i gazu ziemnego w kontekście izotermicznego przepływu gazów. Wprowadza się model przy użyciu równań ruchu, ciągłości i stanu, opisując przepływ w rurociągu. Analiza matematyczna obejmuje także dodanie wodoru do gazu ziemnego, badając wpływ na właściwości mieszaniny. Model umożliwia lepsze zrozumienie fizycznych i termodynamicznych zachowań mieszaniny wodoru i gazu ziemnego, co ma istotne znaczenie w aspekcie potencjalnego wykorzystania wodoru jako składnika sieci gazowej. W artykule podkreśla się również wyzwania związane z wprowadzeniem wodoru do istniejącej infrastruktury gazowej i analizuje konsekwencje tego procesu, mające istotne znaczenie w kontekście zrównoważonej energetyki.
EN
This article focuses on the mathematical model of a mixture of hydrogen and natural gas in the context of isothermal gas flow. The model is introduced using the equations of motion, continuity and state describing the flow in a pipeline. The mathematical analysis also includes the addition of hydrogen to natural gas, examining its impact on the properties of the mixture. The model enables a better understanding of the physical and thermodynamic behaviors of the hydrogen and natural gas mixture, which is crucial for the potential utilization of hydrogen as part of the gas network. The article also highlights the challenges: associated with introducing hydrogen into existing gas infrastructure and analyzes the consequences of this ,process, with significant implications for sustainable energy.
PL
W niniejszym artykule opisany został matematyczny model przepływu gazu w stanie nieustalonym, który następnie został uzupełniony do postaci prezentującej matematyczny model mieszaniny wodoru i gazu ziemnego. Model ten jest wyprowadzany za pomocą równań ruchu, ciągłości oraz stanu i dostarcza precyzyjnego opisu dynamicznych aspektów przepływu gazu. Badania matematyczne obejmują dodanie wodoru do gazu ziemnego, mając na celu umożliwienie zrozumienia wpływu tej modyfikacji na właściwości mieszaniny gazów. Model matematyczny mieszaniny gazów jest linearyzowany w celu zapisu w postaci operatorowej. Postać operatorowa modelu daje możliwość między innymi definicji funkcji przejścia. Funkcje przejścia definiowane są w celu badania reakcji wejście–wyjście. Po przekształceniu do postaci operatorowej funkcje przejścia są wykorzystywane do badania właściwości dynamicznych układu. Kolejnym etapem jest opis funkcji przejścia w postaci widmowej, aby zbadać właściwości dynamiczne rurociągu z wykorzystaniem analizy częstotliwościowej. Charakterystyki częstotliwościowe opisują zachowanie układu w stanie ustalonym przy sygnałach sinusoidalnych. Wyrażają relację między odpowiedzią układu a zadanym wymuszeniem harmonicznym, zmieniającym się w określonym zakresie prędkości kątowej. Charakterystyki częstotliwościowe w skali logarytmicznej przedstawione oddzielnie dla modułu liczby określającej stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego oraz logarytmicznej charakterystyki fazowej, czyli zależności przesunięcia fazowego od prędkości kątowej przedstawionej w skali logarytmicznej, nazywane są charakterystykami Bodego. Charakterystyki Bodego pozwalają analizować, jak dla określonych wartości prędkości kątowej sygnału wejściowego zmieniają się amplituda oraz przesunięcie fazy między sygnałem wyjściowym a wejściowym. Podstawowym celem przeprowadzonej analizy jest zrozumienie procesów przepływu gazu w warunkach nieustalonych. Jednym z kluczowych parametrów branym pod uwagę jest stosunek masowy wodoru do gazu ziemnego, oznaczany jako θ. Ten współczynnik ma decydujące znaczenie dla zrozumienia właściwości mieszaniny gazów. Daje on cenne informacje na temat dynamiki mieszanki. Wpływ tej mieszaniny na procesy przepływu gazu jest istotny zarówno teoretycznie, jak i praktycznie. Prezentowana analiza stanowi istotny krok w kierunku lepszego zrozumienia tych procesów.
EN
This article describes a mathematical model of unsteady gas flow in an unsteady state, which is then extended to represent a mathematical model of a mixture of hydrogen and natural gas. This model is derived using equations of motion, continuity, and state, providing a precise description of the dynamic aspects of gas flow. The mathematical investigations include the addition of hydrogen to natural gas, aiming to understand the impact of this modification on the properties of the gas mixture. The mathematical model of the gas mixture is linearized for representation in operator form. The operator form of the model allows, among other things, the definition of transfer functions. Transfer functions are defined to examine input-output responses. After transformation into operator form, transfer functions are utilized to investigate the dynamic properties of the system. The next step involves describing the transfer functions spectrally to examine the dynamic properties of the pipeline using frequency analysis. Frequency characteristics describe the system's behavior in a steady state under sinusoidal signals. They elucidate the relationship between the system's response and a specified harmonic excitation, varying within a defined range of angular velocities. Frequency characteristics, presented separately for the magnitude of the number, determining the ratio of output signal amplitude to input signal amplitude, and the logarithmic phase characteristics, depicting the phase shift dependence on angular velocity presented in a logarithmic scale, are known as Bode characteristics. Bode characteristics allow the analysis of how amplitude and phase shift between the output and input signals change for specific angular velocity values of the input signal. The primary goal of the conducted analysis is to understand gas flow processes under unsteady conditions. One of the key parameters taken into account is the mass ratio of hydrogen to natural gas, denoted as θ. This coefficient is crucial for understanding the properties of the gas mixture, providing valuable insights into its dynamics. The impact of this mixture on gas flow processes is significant both theoretically and practically. The presented analysis represents a crucial step towards a better understanding of these processes.
EN
The efficiency of natural gas transportation hinges largely on the quality of technological processes involved. Imperfect separation process can lead to the liquid particles remaining in the gas and entering the transport systems, causing various technological issues with gas pipelines (clogging, hydrate formation, corrosion wear, etc.). The presence of mechanical particles in gas mixtures accelerates the degradation of metallic components of the transport system due to erosion. Additionally, the multiphase nature of gases contributes to complications during transportation, altering the quality indicators when different gas qualities are mixed. Consequently, the composition of gas mixtures, their mechanical particles, moisture, and other indicators, deviate non-linearly from their initial values. The technological condition of the main gas pipelines significantly impacts their discharge capacity and hydraulic characteristics. Failure to clean natural gas to current standards and requirements at production stations can result in condensation of water and hydrocarbon vapours in pipelines, leading to the accumulation of the liquid phase in the cavities of the pipeline and the formation of blockages due to hydrate compounds formation, the reduction of the cross-section of the gas pipeline or its complete blockage. Sediment accumulation on the inner surfaces of gas pipelines installed in complex geographical conditions adversely affects transportation system, increasing maintenance, energy, and transportation costs. Utilizing gas composition as an auxiliary tool (indicator) for diagnosing various technological processes and predicting transport parameters has been investigated in numerous research works in the oil and gas production industry.
PL
Efektywność transportu gazu ziemnego zależy w dużej mierze od jakości procesów technologicznych. Niewłaściwy proces separacji może skutkować pozostawaniem cząstek cieczy w gazie i przedostawaniem się ich do systemów transportowych, co z kolei może powodować różne problemy technologiczne związane z gazociągami (zatykanie, powstawanie hydratów, korozja itp.). Obecność cząstek mechanicznych w mieszaninach gazowych przyspiesza degradację metalowych elementów systemu transportowego w wyniku erozji. Ponadto wielofazowy charakter gazów przyczynia się do powstania problemów podczas transportu, ponieważ mieszanie gazów o różnych właściwościach powoduje zmianę wskaźników jakościowych. W rezultacie skład mieszanin gazowych, ich cząstki mechaniczne, wilgotność i inne wskaźniki odbiegają nieliniowo od wartości początkowych. Na przepustowość i charakterystykę hydrauliczną głównych gazociągów znacząco wpływa ich stan technologiczny. Jeśli gaz ziemny nie zostanie oczyszczony zgodnie z obowiązującymi normami i wymaganiami na stacjach produkcyjnych, może to skutkować kondensacją wody i oparów węglowodorów w rurociągach, prowadząc do gromadzenia się fazy ciekłej w pustych przestrzeniach rurociągu i powstawania zatorów z powodu tworzenia się związków hydratowych, zmniejszenia przekroju gazociągu lub jego całkowitego zablokowania. Gromadzenie się osadów na wewnętrznych powierzchniach gazociągów zainstalowanych w złożonych warunkach geograficznych niekorzystnie wpływa na system transportowy, zwiększając koszty konserwacji, energii i transportu. Wykorzystanie składu gazu jako narzędzia pomocniczego (wskaźnika) do diagnozowania różnych procesów technologicznych i przewidywania parametrów transportu było przedmiotem licznych prac badawczych w przemyśle wydobywczym ropy naftowej i gazu ziemnego.
PL
Przedstawiono wyniki badań kompozytowych membran przeznaczonych do rozdzielania mieszanin gazów. Doświadczalnie określono przepuszczalności tych membran względem wybranych czystych gazów (jednoskładnikowych) oraz ich właściwości separacyjne względem dwuskładnikowych mieszanin gazów. Podczas badań właściwości separacyjnych, membrany umieszczano w module membranowym z trzema króćcami i wykonywano doświadczenia mające na celu rozdział mieszanin gazów i pomiar stężeń permeatu. Sformułowano model matematyczny opisujący badany proces i wykonano obliczenia modelowych stężeń permeatu. Uzyskano wysoką zgodność wyników doświadczalnych z wynikami obliczeń modelowych.
EN
Three composite polypropylene-matrix membranes were prepd. by dip coating and used for sepn. of binary gas mixts. (MeH/N2, CO2/N2, CO2/MeH). The math. model of the sepn. process was developed to calc. the permeate compn. High compliance of the exptl. data and model calcns. was achived.
EN
Purpose: The purpose of this investigation is to substantiate by means of numerical simulation the expedience of high-temperature utilization of used tires with subsequent methanation of fuel gases and separation of multicomponent hydrocarbon mixtures to drain the liquefied methane. Design/methodology/approach: The investigation was carried out by means of numerical simulation. In mathematical description of gas processes relations of thermodynamics and heat and mass transfer were used. To determine the coefficients of thermal and physical parameters of working bodies the Peng-Robinson equation of state was used through the computer program REFPROP. The system of equations is represented as the interrelations between the functional elements according to the principle "output from the element A – input into the element B". Its solution was obtained by the method of successive approximations, namely by the Newton-Raphson iteration method. Using this method we have determined the values of temperature, pressure, mass flow rate and mass content of the hydrocarbon gas mixture components in each reference cross-section of the power facility. Findings: As a result of numerical simulation, it is determined that when the multicomponent hydrocarbon mixtures are separated, three flows of energy resources may be obtained: with a high mass content of methane of 91.5% and 83.4%, which may be used as motor fuel, and a gas flow suitable for maintaining the process of waste gasification. However, to remove heat in the condenser of the rectification column, it is necessary to use expensive liquid nitrogen. The cost of methane production may be reduced if the condenser is removed from the rectification column. However, such approach reduces the overall yield of commercial products almost in four times and significantly reduces the methane with the third product (molar percentage of 35%). Research limitations/implications: The investigation was carried out for the material of used tires without a metal frame. Practical implications: The implementation of the technology of high-temperature recycling of used tires gives the opportunity to use the generated synthetic gas to maintain the process of utilization, and gives the opportunity to produce liquefied methane, suitable for storage. Originality/value: The main problem of high-temperature recycling of tires is the emission of toxic gas to the atmosphere. It is proposed to allocate methane energy resource from this gas. For the first time an attempt was made to justify the expedience of the technology of high-temperature utilization of tires for liquefied methane production.
EN
The purpose of this study is to find the relationship between the low-pressure sorption of the gas mixture CO2 and CH4 and properties of coal in the context of geological conditions in the coalbed. These aspects give us a better insight into the interactions between gas mixtures and coal, enabling us to forecast the long-term effects of CO2 storage. In the light of the length of the process and stability of such systems, it is required that physical properties of coal be identified first. A great deal of information can be obtained from sorption isotherms, relating to physico-chemical properties of the sorbent. Test results reveal the relationship between the coal rank and vitrinite reflectance and the sorption capacity of investigated coals.
PL
Celem pracy było znalezienie powiązań między przebiegiem procesu niskociśnieniowej sorpcji mieszaniny gazów CO2 i CH4, a właściwościami węgla kamiennego, w odniesieniu do konkretnych warunków geologiczno złożowych. Informacje te są istotne zarówno ze względu na możliwość uzyskania danych dotyczących oddziaływania mieszaniny gazów z węglem, jak również prognozowanie ewentualnych skutków długoterminowego składowania CO2. Uwzględniając długotrwałość procesu oraz stabilność takiego układu niezbędne jest dokładne poznanie fizycznych właściwości węgli. W tym celu pożądanych istotnych informacji dostarczają izotermy sorpcji, w połączeniu z właściwościami fizykochemicznymi sorbentu. Analiza uzyskanych wyników pozwoliła na wykazanie zależności wpływu stopnia uwęglenia i współczynnika odbicia światła witrynitu na wartość chłonności sorpcyjnej badanych węgli.
PL
W artykule przedstawione zostały wyniki pomiarów chłodziarki Joule’a-Thomsona (J-Т) pracującej w układzie zamkniętym oraz napełnionej mieszaniną gazów. Chłodziarka została zaprojektowana do wytwarzania 50W mocy chłodniczej. Zastosowanie mieszaniny jako czynnika pozwala na obniżenie ciśnienia roboczego do poziomu ok. 2500 kPa. Chłodziarka została zbudowana z wykorzystaniem komercyjnie dostępnych komponentów chłodniczych, co umożliwia skonstruowanie relatywnie taniej chłodziarki kriogenicznej wytwarzającej kilkadziesiąt W mocy chłodniczej, w temperaturze poniżej 100K. Wytworzona moc chłodnicza może być wykorzystana do kriostatowania obiektów, w zastosowaniach kriomedycznych, do skraplania gazów takich jak azot, tlen, metan oraz w instalacjach rekondensacji gazu ziemnego.
8
PL
Wstęp i cele: W pracy przedstawiono pojęcie gazu doskonałego i półdoskonałego. Podano prawa Boyle’a-Mariotte’a, Gay Lussaca-Charlesa, Avogadra. Pokazano równania stanu gazu doskonałego. Omówiono ciepło właściwe, energię wewnętrzną i entalpię dla gazów doskonałych i półdoskonałych. Przedstawiono pojęcie mieszaniny gazów doskonałych i półdoskonałych. Podano prawo Daltona i Leduca. Opisano udział masowy kilogramowy, molowy i objętościowy oraz ciśnienie cząstkowe, stałą gazową mieszaniny gazów, gęstość i masę molową mieszaniny. Podano zależności między udziałem objętościowym a masowym. Materiał i metody: Materiał stanowią źródła z literatury z zakresu termodynamiki. W pracy zastosowano metodę analizy teoretycznej. Wyniki: Rezultatem analizy jest opracowanie i podanie wzorów opisujących równanie stanu gazu doskonałego, ciepło właściwe oraz energię wewnętrzną gazów doskonałych i półdoskonałych. W pracy również opracowano wzory dotyczące mieszanin gazów doskonałych i półdoskonałych. Wniosek: Pojęcie gazu doskonałego wprowadzono w celu uproszczenia analizy zachowań gazów i par rzeczywistych.
EN
Introduction and aim: The paper presents the concept of the perfect and semi-perfect gas. Have been given the rights of Boyle-Mariotte, Gay Lussac-Charles and Avogadro. The perfect gas law has been shown in the paper. Has been discussed the specific heat, internal energy and enthalpy for iperfect and semi-perfect gases. The paper presents the concept of a mixture of perfect and semi-perfect gases. The right of Dalton and Leduc have been presented in this paper. In the considerations has been described pound mass, molar and volume participation. Also has been shown a partial pressure, gas constant of the gas mixture, density and molar mass of the mixture. Has been given the relationship between volume and mass participation. Material and methods: Material covers some sources based on the literature in the field of thermodynamics. The method of theoretical analysis has been shown in the paper. Results: The result of the analysis is the elaboration and presenting some formulas which describe the equation of perfect gas, specific heat and internal energy of perfect and semi-perfect gases. In the study also gives some formulas for the perfect and semi-perfect gas mixtures. Conclusion: The concept of a perfect gas was introduced to simplify the analysis of the behavior of real gases and vapors.
PL
Badania pól prędkości i temperatury w przepływach gazu stanowią istotne zagadnienie metrologiczne w wielu obszarach współczesnej nauki i techniki. Jedna z metod pomiarowych stosowanych w takich badaniach jest termoanemometria. Jest to metoda pomiaru prędkości przepływu gazu poprzez pomiar strat cieplnych grzanego elementu umieszczonego w badanym przepływie. Metoda ta jest metodą pośrednią, w której sygnał wyjściowy jest funkcją nie tylko mierzonej prędkości, ale zależny również od innych parametrów takich jak temperatura i skład gazu oraz parametry czujnika i układu zasilania. W pracy poddano teoretycznej analizie zagadnienie wpływu stężenia mieszaniny powietrze – dwutlenek węgla na pomiar prędkości metodą termoanemometryczną oraz przedstawiono rezultaty badań modelowych.
EN
Research of the fields of velocity and temperature in gas flows are an important issue of metrology in many areas of modern science and technology. One of the measuring methods used in these studies is hot – wire anemometry. It is a method of measuring the velocity of gas flow by measuring heat loss of heated element placed in the gas flow. This method is the indirect method in which the output signal is a function not only of the measured velocity, but depends also on other parameters. The most important are the temperature and gas composition, and the parameters of the probe and electronic anemometer circuit. In this work the issue of the impact of the concentration of a mixture of air – carbon dioxide on the velocity measurement method has been theoretically analyzed. The results of model tests and analysis have been also presented.
EN
Concentrations of CO and NOx during combustion of propane/natural gas mixtures in air and in air enriched with oxygen have been investigated. The mixtures were: low-propane (up to 10 vol. %) and high-propane (up to 45 vol. %) types. A large effect of the propane content on the CO concentration in combustion gases was observed; stronger for the low-propane mixtures. The increase in the NOx concentration with increasing propane content was lower and similar for the two types of mixtures.
11
Content available remote A simple mixture of gases is a mixture of ideal gases
EN
If the thermodynamics of fluid mixture has a classical form, then the simple fluid mixture (Müller [1, 2]) has the special form of the state equation (see Eq. (3.5)). Moreover, if such mixture is gaseous, then it is equivalent to the mixture of ideal gases.
EN
The results of an investigation of ion/molecule reactions in the gaseous mixtures of hydrogen sulfide and ammonia are presented. Measurements were performed using the quadrpole mass spectrometer with a high-pressure in source. The concentration of hydrogen sulfide in the mixtures with ammonia was varied from 10% to 90% with 10% increment. The gas mixtures were prepared in the gas leak system. the influence of repeller potential on ion/molecule reactions efficency was examined for the mixtures of H2S with NH3. The primary and secondary ions NH4(+) (m/q=18), S(+) (m/q=32), H3S(+) (m/q=35) and NH3S(+) (m/q=49) were observed.
EN
A simple method, which enables determination of the laminar burning velocity and the unburned gas velocity ahead of the combustion front in a closed vessel, is presented in the paper. The method is based on electrical probe and Schlieren techniques. There is a good agreement between presented data and other works for all considered equivalence ratios of propane/air mixture. The dependence of unburned gas velocity on flame radius agrees well with the data received using LDV method. The obtained results demonstrate that some difficulties may appear when combustion front of non-spherical shape is considered.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.