Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  miedziowanie bezprądowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Właściwości mechaniczne mikrosfer glinokrzemianowych z warstwami metalicznymi
PL
Przedstawiono wyniki badań wybranych właściwości mechanicznych mikrosfer glinokrzemianowych pokrytych warstwami metalicznymi. Warstwy miedzi nanoszono albo metodą bezprądową (chemiczną) z wykorzystaniem katalizatora palladowego, albo metodą rozpylania magnetronowego. Warstwy niklu otrzymywano tylko metodą magnetronową. Magnetron zasilano za pomocą zasilacza Dora Power System (DPS), który generował impulsy o charakterze sinusoidalnym z częstotliwością 80 kHz. Pozwala to określić stosowaną technikę magnetronową jako impulsową (Pulsed Magnetron Sputtering). Katodami były tarcze wykonane z odpowiednich metali. Proces rozpylania magnetronowego prowadzono przy ciśnieniu argonu ok. 0,4 Pa i natężeniu prądu nieprzekraczającym 0,5 A. Specjalnie zaprojektowany stolik wibracyjny umożliwiał obrót mikrosfer w trakcie procesu nanoszenia. Proces nanoszenia miedzi metodą bezprądową prowadzono w temperaturze 20oC w trzech etapach. Pierwszy etap, trwający 1 h, polegał na uczulaniu metalizowanej powierzchni mikrosfer jonami cyny(II) w kąpieli wodnej, o składzie 5 g/l SnCl2 i 30 ml/l HCl. W drugim etapie, w kąpieli o składzie 0,5 g/l PdCl2 i 5 ml/l HCl, w miejscu uprzednio zaadsorbowanych jonów cyny następowało osadzenie metalicznego palladu (Pd0). Trzeci etap, trwający 6 min, polegał na bezpośrednim osadzaniu metalicznej miedzi z kąpieli o składzie 5 g/l NaOH, 30 g/l NaKC4H4O6, 12 g/l CuSO4.5H2O i 20 ml/l HCHO. Badania morfologii i składu chemicznego za pomocą elektronowej mikroskopii skaningowej i mikroanalizy rentgenowskiej wykazały, że warstwy niklu i miedzi naniesione metodą magnetronową były ciągłe, jednorodne i miały budowę kolumnową, a krystality tworzące kolumny miały rozmiary submikronowe. Warstwy naniesione metodą bezprądową charakteryzują się brakiem uprzywilejowanej orientacji krystalitów. Na podstawie przebiegu krzywych nacisk-odkształcenie wyznaczono wytrzymałość na ściskanie i odporność na miażdżenie. Stwierdzono, że warstwy metaliczne o grubości nieprzekraczającej 2 μm powodowały wzmocnienie powierzchni mikrosfer. Podczas pękania mikrosfer na ogół nie następowało oddzielenie warstwy od podłoża, co świadczy o dobrej przyczepności. Efekt podwyższonej wytrzymałości na ściskanie jest szczególnie istotny w przypadku wykorzystania mikrosfer glinokrzemianowych z warstwami metalicznymi do wytwarzania kompozytów.
EN
The paper presents selected mechanical properties of cenospheres modified with metallic layers. Copper was deposited either by electroless (chemical) method using palladium catalyst or by magnetron sputtering. Nickel was deposited by magnetron sputtering only. Magnetron was supplied by Dora Power System (DPS) which generated sinusoidal pulses with a frequency of 80 kHz. This is why the applied technique can be referred to as Pulsed Magnetron Sputtering. Targets (cathodes) were made of suitable metals, i.e. copper or nickel. The magnetron sputtering process was conducted under an argon pressure of about 0,4 Pa and current intensity not exceeding 0.5 A. A specially designed vibrating support enabled rotation of cenospheres during the deposition. The pressureless deposition of copper was conducted at a temperature of 20oC in three steps. The first one, lasting about 1 hour, consisted in sensitization of the microsphere surface with tin (II) ions in an aqueous soluteon composed of 5 g/L SnCl2 and 30 ml/L HCl. In the second step, the earlier adsorbed tin ions were replaced by metallic palladium (Pdo) in a solution composed of 0.5 g/L PdCl2 and 5 ml/L HCl. The third step, lasting about 6 min, comprised direct deposition of metallic copper from a solution composed of 5 g/L NaOH, 30 g/L NaKC4H4O6, 12 g/L CuSO4.5H2O and 20 mL/L HCHO. Morphological observations and analysis of chemical composition by scanning electron microscopy and energy dispersive X-ray spectroscopy indicated that the magnetron-sputtered nickel and copper layers were homogeneous and compact. The crystallites forming a columnar structure had submicrometric sizes. Electroless copper layers were characterized by random orientation of crystallites. The experimental load-deformation curves were used to determine compressive strength and crushing strength. It has been found that metallic layers, not exceeding 2 μm in thickness, brought about strengthening of the cenospheres. Cracking of the cenospheres was not accompanied by exfoliation of the metallic layers, which suggested good adherence. The effect of increased compressive strength appears particularly important for the envisaged application of cenospheres modified with metallic layers as components of composites.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.