Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microvasculature
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aggregation of red blood cells in the micro vasculature may affect blood viscosity in the vessel. The purpose of this study was to investigate the potential effect of non-uniform viscosity caused by red blood cell (RBC) aggregation on nitric oxide (NO) concentration and distribution. A 3-D multi-physics model was established to simulate the production, transport and consumption of NO. Two non-uniform viscosity models caused by RBC aggregation were investigated: one assuming a linear and the other a step hematocrit distribution. In addition, the effect of the thickness of the plasma layer was tested. Simulation results demonstrate that non-uniform viscosity caused by RBCs aggregation influences NO concen-tration distribution. Compared with the uniform viscosity model, NO concentration using non-uniform viscosity is lower than that using uniform viscosity. Moreover, NO concentration calculated from the step hematocrit model is higher than that calculated from the linear hematocrit model. NO concentrations in the endothelium and the vascular wall decrease with the decline of the thickness of the plasma layer. The relative decrease differs between the linear and the step model. Our results suggest that non-uniform viscosity caused by red blood cell aggregation affects nitric oxide distribution in the micro vasculature. If uniform viscosity is assumed when performing numerical simulations, NO concentration values may be overestimated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.