Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microstructure modelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aluminium foams are a new group of materials used for impact energy absorbing elements. They are light (typically 10-25% of the density of the metal they are made of) and stiff, and are frequently proposed as a light weight structural material. That is why they often are applied in automotive and transport industry solutions, for example as parts of bumpers. The methods of numerical modelling for open and closed cell aluminium foams are presented in the paper as well as closed and open cellfoam microstructure model. The numerical models of foam ideal microstructures created with shell finite elements are shown. The models were developed on the basis of Kefain tetrakaidecahedrons - structures consisting of six squares and eight hexagons. In the case of closed cell foams, the polyhedron with full walls was adopted. In the case of open cell foams the circle wholes were removed from polyhedron surfaces. Then the numerical analysis of a created models compressive test was carried out with the usage of LS Dyna computer code. The nonlinear procedures were applied. The results were analyzed in the scope of energy absorbing properties of aluminium foams.
2
Content available remote Modelling of microstructure evolution in hot work tool steels during service
EN
Hot work tool steels are commonly in use as tools for manufacturing processes of metallic materials at elevated temperatures. To establish a reliable lifetime prediction of the tool, it is necessary to characterize the initial microstructure as well as its evolution during service since the material properties depend on the microstructural configuration. The investigated X38CrMoV5-1 hot work tool steel, which has a body centered cubic lattice structure, forms a distinct dislocation cell and subgrain structure, respectively. In this work a dislocation model for thermal creep using the rate theory with particular consideration of the subgrain boundary behaviour is applied [1]. The subgrains limit the dislocation movement and their diameter is a key parameter in determining the creep rate under many conditions. Prior computations using a dislocation dynamics technique show that the emergence of an organized subgrain structure results as a consequence of elastic energy minimization. The choice of a dislocation model has many advantages over phenomenological models and equations of state with variables not identified with microstructural features in hot work tool steels. For a detailed description of the dislocation density evolution under thermal and cyclic mechanical loads, the dislocation model is adapted to consider both creep and concurrent appearing of low cycle fatigue. Several impacts of different load cases on the microstructure evolution are demonstrated. Simultaneously, the influence of precipitation size evolution and distribution on dislocation movement is considered. The model is compared with experimental investigations of inelastic strains in tools used for hot extrusion applications, i.e. for both container [2] and die [3]. [1] N.M. Ghoniem et al.: "A dislocation model for creep in engineering materials", Res Mechanica 29, 197-219, 1990 [2] C. Sommitsch et al.: "Modelling of creep-fatigue in containers during aluminium and copper extrusion", Computational Materials Science 39, 55-64, 2007 [3] W. Mitter et al.: "Lifetime prediction of hot work tool steels", Lab. Report, Journal of Heat Treatment and Materials Science (HTM), 52, 1997
PL
Tematem pracy jest przewidywanie czasu pracy narzędzi w warunkach eksploatacyjnych. Końcowe własności wyrobu zależą od jego początkowej mikrostruktury oraz zmian tej mikrostruktury podczas wytwarzania. Dlatego za główny cel pracy postawiono sobie modelowanie rozwoju mikrostruktury podczas procesu obróbki cieplnej oraz pracy narzędzi w warunkach eksploatacyjnych. Modelowanie ewolucji mikrostruktury ze szczególnym uwzględnieniem kinetyki wydzieleń wykonano z wykorzystaniem pakietu MatCalc. W pracy analizie poddano stal narzędziową X38CrMoV5-1 o strukturze bcc, która tworzy wyraźną strukturę dyslokacyjną oraz podziarnową. Wykonane obliczenia numeryczne poddano również weryfikacji doświadczalnej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.