Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  micropolar lubrication
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide bearing gap. Lubrication oil is fluid with micropolar structure. Materials engineering and tribology development helps to introduce oils with the compound structure (together with micropolar structure) as a lubricating factors. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modelling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure, velocity and velocity of microrotation distribution in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid A1. Differences were showed on graphs in the schedule of the circumferential velocity oils after the height of the gap in the flow of the micropolar and Newtonian liquid. In presented flow, the influence of lubricating fluid inertia force and the external elementary body force field were omitted. Presented calculations are limited to isothermal models of bearing with infinite length.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide bearing gap. Lubrication oil is fluid with micropolar structure. Materials engineering and tribology development helps to introduce oils with the compound structure (together with micropolar structure) as a lubricating factors. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modeling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure, velocity and velocity of microrotation distribution in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Ë1. Differences were showed on graphs in the schedule of the circumferential velocity oils after the height of the gap in the flow of the micropolar and Newtonian liquid. In presented flow, the influence of lubricating fluid inertia force and the external elementary body force field were omit. Presented calculations are limited to isothermal models of bearing with infinite length.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Materials engineering and tribology development helps to introduce oils with the compound structure (together with micropolar structure) as a lubricating factors. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modelling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure, velocity and velocity of microrotation distribution in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Lambda 1. Differences were showed on graphs in the schedule of the longitudinal velocity oils after the height of the gap in the flow of the micropolar and Newtonian liquid. In presented flow, the influence of lubricating fluid inertia force and the external elementary body force field were omitted. Presented calculations are limited to isothermal models of bearing with infinite breadth.
PL
W referacie omówiono i przedstawiono rozwiązanie numeryczne równania Reynoldsa opisującego laminarny, stacjonarny przepływ czynnika smarującego o strukturze mikropolarnej w szczelinie wzdłużnego łożyska ślizgowego. Założono stałą gęstość oraz lepkości dynamiczne charakteryzujące olej mikropolarny. Punktem wyjścia są równania pędu, momentu pędu oraz równanie ciągłości przepływu, skąd otrzymano równanie Reynoldsa. Wyniki są przedstawione w postaci rozkładu ciśnienia, jego wartości maksymalnej oraz nośności w zależności od wartości liczby sprzężenia N i bezwymiarowej długości μ1 cieczy mikropolarnej. Prezentowane wyniki przedstawione są w postaci charakterystyk bezwymiarowych i porównane z rozwiązaniem dla oleju newtonowskiego.
EN
This paper presents the results of the numerical solution for the Reynolds equation for laminar, steady oil flow in a slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Materials engineering and tribology development helps to introduce oils with a compound structure (together with micropolar structure) as lubricating factors. Exploitation requirements incline designers to use special oil refining additives, to change viscosity properties. As experimental studies show, most of the refining lubricating fluids can be included as fluids of non-Newtonian properties with microstructure. In modelling properties and structures of micropolar liquid, one can introduce a dimensionless parameter within the terminal chance conversion of a micropolar liquid to a Newtonian liquid. The results are shown on diagrams of hydrodynamic pressure and capacity forces in dimensionless form in dependence on coupling number N2 and the characteristic dimensionless length of micropolar fluid μ1. Presented calculations are limited to isothermal models of bearing with infinite breadth.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modeling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Λ1. Presented calculations are limited to isothermal models of bearing with infinite breadth.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide cylindrical bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modeling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of capacity forces in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Λ1. Presented calculations are limited to isothermal models of bearing with infinite length.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modelling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N and characteristic dimensionless length of micropolar fluid A1. Presented calculations are limited to isothermal models of bearing with inflnite breadth. Especially, geometry schema of the slide Journal plane bearing gap, the dimensionless pressure distributions p1 in dependence on coupling number N2, the dimensionless pressure distributions p1 in dependence on characteristic dimensionless length of micropolar fluid, the dimensionless maximal pressure p1m in dependence on coupling number N, gap convergence coefficient are presented in the paper.
8
Content available remote Ciśnienie w poprzecznym łożysku ślizgowym smarowanym olejem mikrpolarnym
PL
W referacie omówiono i przedstawiono rozwiązanie numeryczne równania Reynoldsa opisującego laminarny, stacjonarny przepływ czynnika smarującego o strukturze mikropolarnej w poprzecznym cylindrycznym łożysku ślizgowym. Założono stałą gęstość oraz lepkości dynamiczne charakteryzujące ciecz mikropolarną. Punktem wyjścia są równania pędu, momentu pędu oraz równanie ciągłości przepływu, skąd otrzymano równanie Reynoldsa. Wyniki są przedstawione w postaci rozkładu ciśnienia, jego wartości maksymalnej w zależności od wartości liczby sprzężenia N2 i bezwymiarowego parametru długości [lambda]1 cieczy mikropolarnej. Prezentowane wyniki przedstawione są w postaci charakterystyk bezwymiarowych i porównane z rozwiązaniem dla oleju newtonowskiego.
EN
Present paper shows the results of a numerical solution Reynolds equation for laminar, steady oil flow in a slide-bearing gap. Lubrication oil is fluid with micropolar stucture. Properties of oil lubrication as a liquid with micropolar stucture in comparison with Newtonian liquid, are characterised in respect to dynamic viscosity and the dynamic couple viscosity and three dynamic rotational viscosity. Concerning the structural element of liquid a characterised by the microinertia coefficient. In the modelling properties and structures of micropolar liquid one can introduce it is also dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results are shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid [lambda] 1. Presented calculations are limited to isothermal models of bearing with infinite length.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modeling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid A1. Presented calculations are limited to isothermal models of bearing with infinite length.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.