Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microelectromechanical system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The preparation of CNT/PMMA composite film on SiO2 substrates
EN
Microelectromechanical system (MEMS) has been highly valued since the size of the MEMS structure is miniaturized, the spacing between the components is in the nanometer range, and the behaviors of friction and adhesion greatly affect the reliability of MEMS. An atomic force microscope (AFM) was used to observe the surface morphology of carbon nanotube (CNT)/polymethyl methacrylate (PMMA) film, and X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical state of typical elements on the surface of the film. The friction and wear properties of composite nano-films under macroscopic conditions were systematically studied. The research results show that the composite nano-film has excellent anti-friction and anti-wear properties.
EN
In this work, a novel polystyrene/Fe3O4 nanocomposite prepared by in-situ method is presented. Magnetic Fe3O4 nanoparticles were encapsulated by polystyrene. The FT-IR spectra confirmed polystyrene/ Fe3O4 nanocomposite preparation. The electrical properties of prepared nanocomposite were investigated by cyclic voltammetry (CV). The CV analysis showed good electrical conductivity of the synthesized nanocomposite. Magnetic properties of the nanocomposite were studied by vibrating sample magnetometer (VSM). The VSM analysis confirmed magnetic properties of the nanocomposite. The morphology and the size of the synthesized nanocomposite were investigated by field emission scanning electron microscope (FESEM). According to the VSM and CV results, such nanocomposite can be used in microelectromechanical systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.