Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microcrystalline chitosan
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The stabilities of microcrystalline chitosan (MCCh) systems with selected non-steroidal anti-inflammatory drugs (NSAIDs) were investigated after storage at ambient temperature for 12 months or at 60 and 80 °C for 5 h. Diclofenac (DA) and ketoprofen (KTA) in free acid form were used as model drugs in this study. For both the MCCh-drug (DA, KTA) systems, the intensity of bands corresponding to chitosan and drug slightly decreased as the temperature increased. X-ray diffraction and differential scanning calorimetry (DSC) showed that KTA in the microcrystalline chitosan systems remained in the amorphous state in contrary to DA, which was present in crystalline state. The interactions between DA and MCCh are not as strong and develop with time. The interaction between KTA and polymer (decrease in drug crystallnity) in stored systems is similar to those in freshly prepared samples. The amorphic form of KTA is present throughout the whole storage time. Slight decrease in KTA release rate was observed for MCCh film stored at 80 °C. These results suggest that microcrystalline chitosan is a suitable carrier for drugs of different solubility.
PL
Zbadano interakcję nośnika polimerowego [zawierającego grupy aminowe mikrokrystalicznego chitozanu, MCCh, wzór (I)] z niesteroidowymi substancjami przeciwzapalnyrni [diklofenakiem, DA, wzór (II) i ketoprofenem, KTA, wzór (III)], wybranymi jako modelowe substancje lecznicze o charakterze kwasu. Celem pracy było określenie wpływu czasu przechowywania, temperatury i charakteru oddziaływania tego nośnika z lekiem na szybkość uwalniania substancji leczniczej z MCCh (rys. 5). Charakter wspomnianego oddziaływania oceniano metodami IR (rys. 1 i 2), DSC (rys. 3) oraz rentgenograficzną (rys. 4). Uzyskane wyniki świadczą o tym, że specyficzne oddziaływania pomiędzy lekiem o charakterze kwasu i polimerem zawierającym wolne grupy aminowe prowadzą do tworzenia trwałych połączeń, charakteryzujących się lepszą rozpuszczalnością. Czas przechowywania i temperatura nie wpływają w istotny sposób na ilość uwolnionego KTA z układu z MCCh, aczkolwiek nośnik ten zmienia pierwotną strukturę krystaliczną KTA na amorficzną, która jest obecna przez cały czas przechowywania. Natomiast w przypadku DA o znacznie mniejszej rozpuszczalności w wodzie stwierdzono poprawę uwalniania (rozpuszczalności) dopiero pod wpły-wem przechowywania, chociaż przechowywanie tylko nieznacznie zmienia krystaliczność DA. Można stwierdzić, że w tym przypadku oddziaływania pomiędzy polimerem i lekiem nie są mocne i zależą od czasu przechowywania. Mikrokrystaliczna odmiana chitozanu ze względu na specyficzny charakter interakcji z niesteroidowymi substancjami przeciwzapalnymi jest więc korzystnym nośnikiem.
2
Content available remote Studies on the Biodegradation of Microcrystalline Chitosan in Aqueous Medium
EN
Microcrystalline chitosan (MCCh), obtained from standard chitosan of shrimp-shell origin in film form and a lyophilisate, was subjected to biodegradation in an aqueous medium. The aim of the investigation was to determine the effect of the form of the material, the time and the temperature of biodegradation on its course. The estimation of the biodecomposition degree was carried out by applying such methods as gravimetry - weight loss investigations, gel permeation chromatography (GPC) - changes in molecular structure, and FTIR -spectrophotometry. The results obtained lead to the conclusion that MCCh is a polymer which easily undergoes biodegradation. Within the range of the temperatures used in tests the best results were received at 40°C.
PL
Badaniom poddano chitozan mikrokrystaliczny w formie folii i liofilizatu, wytworzony z chitozanu standardowego, pochodzącego z krewetek. Celem badań było określenie wpływu postaci preparatu, czasu i temperatury biodegradacji na jej przebieg. Ocena procesu dekompozycji prowadzona była takimi metodami jak: grawimetria - ubytek masy preparatu, chromatografia żelowa (GPC) - zmiany struktury molekularnej i spektrofotometria FTIR - zmiany stopnia deacetylacji. Uzyskane wyniki pozwalają stwier-dzić, że chitozan mikrokrystaliczny jest polimerem łatwo poddającym się degradacji biologicznej. W badanym zakresie temperatur proces przebiegał najkorzystniej w temperaturze 40°C
3
Content available remote Application of Selected Usability Forms of Chitosan for Dressings
EN
Requirements for biological dressings have been increasing in recent years. In addition to their fundamental protective function, biological dressings shorten of the wound healing process or even can replace patients' lost skin of. This paper presents an investigation into the application of several usable forms of chitosan such as films, sponges, and hydrogels for wound dressing manufacture. The unique properties of microcrystalline chitosan such as biodegradibility, ability to form film, non-toxicity and biocompatibility, as well as its high miscibility with other polymers and its bioactivity, make this polymer an unusually attractive reproducible natural material for wound healing dressings.
PL
W ostatnich latach można zauważyć wzrastające zapotrzebowanie na biologiczne środki opatrunkowe. Opatrunki biologiczne, poza swoją podstawową funkcją zabezpieczającą, przyczyniają się do skrócenia procesu gojenia ran oraz mogą zastępować skórę pacjentów. W artykule przedstawiono ocenę zastosowania różnych form mikro-krystalicznego chitozanu, takich jak błony, gąbki i hydrożele, do produkcji środków opatrunkowych. Unikalne właściwości mikrokrystalicznego chitozanu, takie jak biodegradowalność, zdolność do tworzenia błon, brak toksyczności, bioaktywność, biokompatybilność, jak również zdolność do mieszania z innymi polimerami, czynią ten polimer niezmiernie atrakcyjnym, reproduktywnym materiałem naturalnym do produkcji opatrunków.
EN
The flow behavior of gel-like water dispersions containing 2-4 wt. % of microcrystalline chitosan (MCCh) (Table 1), selected anti-inflammatory drugs (diclofenac acid, ketoprofen acid, diclofenac Na, ibuprofen Na) (Table 2), and various auxiliary substances (triethanolamine, glycerol, etc.), viz., viscosity and yield stress (TAOO), were studied in relation to MCCh content, drug content (Table 4), temperature, shear rate, and storage time. Methylcellulose was used as a model gel-forming substance. The power-law Ostwald-de Waele [12] (eqn. 1) and the Herschel-Bulkley (eqn. 2) models were used for the diluted and for the MCCh-rich hydrogels, respectively; the adjustable parameters, k and n, and activation energy were established (Tables 3, 4, Fig. 5). Measurements were carried out immediately after preparation and after a year's long storage (Table 5). Low-polymer MCCh hydrogels are non-Newtonian fluids with n < 1, shear-thinned, and with no yield stress. Polymer-rich hydrogels, n < 1 and TAO O > 0, are viscoelastic fluids, shear-thinned; they have a yield stress. As the temperature was raised, TAO O decreased. For most hydrogel systems, the Arrhenius equation adequately described the variation of apparent viscosity with temperature. As the shear rate was increased, viskosity and activation energy decreased. In one year's long storage at 20°C the viscosity of the MCCh hydrogel was lower and that of the hydrogel containing an active substance was slightly higher. The polymer content decides whether the MCCh hydrogel is a pseudoplastic or a plastic fluid. Glycerol and 1,2-propylene glycol as hydrophilizing agents and methylcellulose hydrogel were found to be useful additives ensuring spreading over, and adhesion to, the surface of the human skin.
PL
Określono właściwości reologiczne żelowych zawiesin wodnych (pH ok. 7) mikrokrystalicznego chitozanu (MCCh) w zakresie zawartości polimeru 2-4% mas. i temperatury 20°C-40°C (tab. 1) jako podłoża wybranych niesteroidowych leków przeciwzapalnych zawierających także środki pomocnicze (trietanoloaminę, glicerrol, glikol 1,2-propylenowy i in.). Badano lepkość i granicę płynięcia w zależności od zawartości MCCh i leku; temperatury, szybkości ścinania oraz czasu przechowywania. Jako modelową substancję żelującą stosowano metylocelulozę. Właściwości reologiczne hydrożeli opisano równaniami potęgowymi [równ. (1) - hydrożele rozcieńczone, równ. (2) - hydrożele bardziej stężone]; wyznaczono parametry dobieralne k oraz n (tab. 3, 4), granicę płynięcia (TAO 0) i energię aktywacji (E 0) przepływu lepkiego (rys. 5). Pomiary w temp. 20°C (rys. 1) wykonano bezpośrednio po sporządzeniu hydrożelu i po upływie roku (tab. 5). Hydrożel MCCh o małej zawartości polimeru jest płynem nienewtonowskim, rozrzedzanym podczas ścinania, charakteryzującym się n < 1 i nie mającym granicy płynięcia. W warunkach większych zawartości polimeru (n < 1 oraz TAO 0 > 0) hydrożel stanowi płyn lepkoplastyczny, rozrzedzany podczas ścinania i z granicą płynięcia. W układach hydrożelowych wartość TAO O malała ze wzrostem temperatury. W odniesieniu do większości układów równanie Arrheniusa dobrze opisuje zmianę lepkości pozornej z temperaturą. Lepkość pozorna i energia aktywacji płynięcia hydrożelu MCCh oraz preparatów z substancją aktywną malały ze wzrostem szybkości ścinania. Po roku przechowywania w temp. 20°C lepkość hydrożelu MCCh była nieco mniejsza, a hydrożelu zawierającego lek - nieco większa. Glicerrol i glikol 1,2-propylenowy jako środki hydrofilizujące oraz żelująca metyloceluloza okazały się korzystnymi dodatkami zapewniającymi dobre rozprowadzenie badanych układów i przyleganie ich do skóry ludzkiej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.