Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microcogeneration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule zaprezentowano silnik Stirlinga jako element układów mikrokogeneracyjnych. Opisano zasadę działania silnika Stirlinga oraz przedstawiono jego zalety w stosunku do innych silników cieplnych w kwestii wykorzystania go jako elementu układu mikrokogeneracyjnego. Te zalety to przede wszystkim możliwość pracy na dowolnym paliwie, tzn. wykorzystanie ciepła wygenerowanego w dowolny sposób. Najpopularniejsze układy zawierające silnik Stirlinga to układy zasilane paliwem gazowym. Ma to swoje uzasadnienie w łatwiejszej konstrukcji palnika, który lepiej przekazuje ciepło do głowicy silnika Stirlinga. Układy na paliwo stałe wymagają bardziej rozbudowanych konstrukcji wymienników przekazujących ciepło do głowicy silnika co zaprezentowana na przykładach w niniejszym artkule. Przedstawiono również przykładowe komercyjne układy tak na paliwo stałe jak i gazowe.
EN
The article presents the Stirling engine as an element of microcogeneration systems. The principle of operation of the Stirling engine is described and its advantages over other heat engines are presented in terms of its use as an element of a microcogeneration system. These advantages include, first of all, the possibility to work with any fuel, i.e. the use of heat generated in any way. The most popular Stirling engine systems are gas fueled systems. This is due to the much simple design of the burner, which better transfers heat to the Stirling engine heat acceptor. Solid fuel systems require more elaborate heat exchanger designs to transfer heat to the heat acceptor head as shown in the examples in this article. Examples of commercial systems for both solid fuel and gas are also presented.
PL
W artykule przedstawiony został projekt hybrydowego układu zasilania dla domu jednorodzinnego. System hybrydowy składa się z układu kogeneracyjnego (micro – CHPH), instalacji słonecznej oraz kondensacyjnego kotła gazowego. Ponadto zastosowano długoterminowy magazyn ciepła oraz akumulator energii elektrycznej. W uproszczonej analizie ekonomicznej przedstawiono czas zwrotu nakładów inwestycyjnych instalacji hybrydowej w porównaniu z eksploatacją instalacji konwencjonalnej zasilanej kotłem gazowym.
EN
This article presents a hybrid supply system project for single-family housing. The hybrid system is composed of a cogeneration system (micro – CHPH), solar installation and gas-fired condensing boiler. Additionally, an extended heat accumulation and electric storage unit were used. A simplified economic analysis presents payback time for hybrid power systems compared to costs of operating conventional gas-fired boilers.
EN
The Organic Flash Cycle (OFC) is suggested as a vapor power cycle that could potentially improve the efficiency of utilization of the heat source. Low and medium temperature finite thermal sources are considered in the cycle. Additionally the OFC’s aim is to reduce temperature difference during heat addition. The study examines 2 different fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC). Preliminary results show that ethanol and water are better suited for the ORC and OFC due to higher power output. Results also show that the single flash OFC achieves better efficiencies than the optimized basic ORC. Although the OFC improves the heat addition exergetic efficiency, this advantage was negated by irreversibility introduced during flash evaporation.
PL
Kogeneracja jest to proces zamiany energii chemicznej paliwa na energię mechaniczną, elektryczną, ciepło bądź chłód realizowaną w jednej maszynie lub w zespołach maszyn wzajemnie połączonych ze sobą. Proces ten może być realizowany w dużej skali w konwencjonalnych układach skojarzonych lub w małej lokalnej skali zwanej mikrokogeneracją. Jedną z technologii mikrokogeneracyjnych są układy oparte na silnikach spalinowych. W silnikach istnieje wiele źródeł ciepła, lecz głównie jest to ciepło niskotemperaturowe.W ramach pracy opracowano model obliczeniowy symulujący pracę wymiennika ciepła. Opisano metody obliczeniowe stosowane do szacowania współczynników przenikania ciepła oraz strat ciśnienia. Uzyskano wyniki obliczeń dla stanu nominalnego. Przeprowadzono studium przypadku dla: zmiennych wariantów geometrycznych (zmiana szyku, zmiana średnicy rur, zmiana średnicy płaszcza, zmiana ilości przegród poprzecznych), zmienionego rodzaju paliwa oraz przy zmieniającym się punkcie pracy silnika spalinowego. Uzyskano parametry geometryczne wymiennika do pracy w układach mikrokogeneracyjncyh o niskiej mocy–średnica płaszcza wyniosła 220mm, długość wymiennika 853 mm, liczba rur 87. Wymiennik będzie pracował w zakresie mocy 5-6,5 kW co odpowiada zakresowi regulacji silnika spalinowego. Dodatkowo przeanalizowano możliwości regulacji instalacji pod kątem przepływającego glikolu, dla zachowania stałego przyrostu temperatury w wymienniku. Instalację należy regulować w przedziale 12-18kg/min.
EN
Cogeneration is the conversion process of fuel chemical energy into mechanical, electric, heat or cool produced in one machine or in group with connection between them. This process can be conducted in the large scale in classic CHP units or in the small local scale which is known as microcogeneration. One of microcogeneration technologies are systems based on internal combustion engines. There are various sources of utility heat, but significant amount of them are low temperature heat. In this thesis mathematical model dedicated to simulation heat ex-changer work was created. Calculations used to estimate convective heat transfer coefficient and pressure loses were described and results in nominal state were obtained. Furthermore afew case studies which took under consideration:variable geometrical parameters (pattern change, change of pipe diameter, change of shell diameter, various baffle number), various fuel type andwere conductedin engine different working conditions.Typical parameters for shell and tube dedicated for low power microcogeneration has been obtained–for shell diameter 220 mm, for heat exchanger length 853, and amounts of pipes 87. Heat Exchanger will be working in power range 5-6,5 kW, what is connected with engine regulation range. Additionally regu-lation perspective has been analyzed, when constant temperature growth is needed installation should be regulated in range 12-18 kg/min.
5
Content available remote Zastosowanie gazowych układów mikrokogeneracyjnych w budownictwie komunalnym
PL
W pracy przedstawiono podstawowe uwarunkowania budowy gazowych układów mikrokogeneracyjnych μCHP o mocach do 1 MWel w budynkach. Skupiono się na układach opartych o silniki tłokowe i mikroturbiny gazowe. Omówiono specyfikę zapotrzebowania na nośniki energii w różnych rodzajach budynków. Przedstawiono eksploatacyjne uwarunkowania doboru układu μCHP pod kątem optymalizacji efektu energetycznego, tzn. przede wszystkim i ekonomicznego. Wskazano na te parametry techniczne, eksploatacyjne i cenowe, które mają największy wpływ na uzyskiwane wskaźniki opłacalności.
EN
Paper presents basic circumstances of instalation gas supplied microcogeneration systems μCHP in buildings. Microcogeneration system based on IC engines and microturbines of nominal electric power up to 1 MWel are considered. Specific features of heat and electricity demand in buildings are discussed. Exploitation aspects of μCHP sizing to obtain optimal technical indices (primary energy savings PES, total efficiency EUF, minimalization of emissions) are then presented. Basic technical, operational and financial parameters which influence economical effects are pointed out and discussed.
EN
This paper reports tests of an innovative micro-CHP unit prototype, consisting of a traditional gas boiler and organic Rankine cycle (ORC), which incorporates original system components such as an axial vapour microturbine, evaporator and condenser. The system co-generates heat and electricity for a single household or a group of households. Electricity is only a by-product during production of heat. While testing the prototype, temperatures of the ORC working fluid and condenser cooling water were measured, as well as the heat flows, electricity output, and the efficiency of the entire system were estimated. It has been shown that the tested system can produce 1 kWe of electricity, and a typical home gas boiler can at the same time act as an autonomous source of heat for heating purposes and for the production of saturated/superheated ethanol vapour in the ORC system. In the authors’ opinion, a commercially available gas boiler, additionally equipped with an ORC module with an ecological working fluid, may be considered a perspective co-generation unit for future households located outside the system heat supply.
PL
W artykule przedstawiono badania innowacyjnej prototypowej jednostki micro-CHP, składającej się z tradycyjnego kotła gazowego i organicznego obiegu Rankine’a (ORC), w skład którego wchodzą oryginalne elementy układu, jak osiowa mikroturbina parowa, parownik i skraplacz. System umożliwia kogeneracyjne wytwarzanie ciepła i energii elektrycznej na potrzeby pojedynczego gospodarstwa domowego lub grupy gospodarstw domowych. Podczas produkcji ciepła energia elektryczna jest wytwarzana jako produkt uboczny. W trakcie badań prototypu zebrano robocze temperatury czynnika roboczego ORC oraz wody chłodzącej skraplacz, oszacowano strumienie ciepła, wytwarzaną energię elektryczną i efektywność całego systemu. Wykazano, że badany układ jest zdolny wygenerować moc elektryczną na poziomie 1 kWe, a typowy domowy kocioł gazowy może równocześnie stanowić autonomiczne źródło ciepła dla celów grzewczych i produkcji pary nasyconej / pary przegrzanej etanolu w systemie ORC. W opinii autorów komercyjnie osiągalny kocioł gazowy, dodatkowo wyposażony w moduł ORC z ekologicznym czynnikiem roboczym, może być uważany za perspektywiczną jednostkę kogeneracyjną dla przyszłych gospodarstw domowych, zlokalizowanych poza siecią ciepła systemowego.
7
PL
W artykule przedstawiono badania stanowiskowe układu mikrokogeneracyjnego z silnikiem Stirlinga. Zaprezentowano wpływ takich parametrów eksploatacyjnych jak: prąd obciążenia, średnie ciśnienie gazu roboczego, zmianę napięcia na maszynie elektrycznej, którym towarzyszą przyspieszenia drgań korpusu układu mikrokogeneracyjnego. Badania przeprowadzono dla gazu roboczego, którym był azot. Znaczna liczba powtórzeń pozwoliła na opis wyników badań w ujęciu statystycznym z użyciem takich miar jak: kurtoza, wskaźnik zmienności, współczynnik asymetrii a także funkcji gęstości prawdopodobieństwa. Badania pozwalają stwierdzić czy przeprowadzony eksperyment jest powtarzalny oraz jak wybrane parametry eksploatacyjne wpływają na przyspieszenia drgań układu mikrokogeneracyjnego.
EN
The article presents a study on the micro-cogeneration test stand with a Stirling engine. It describes the influence of operating parameters such as load current, average working gas pressure and changes of the voltage of the electrical machine, which is accompanied by body vibration acceleration of the micro-cogeneration system. The study was conducted for the working gas, which was nitrogen. A significant number of repetitions allowed the description of the results of research in statistical terms using measures such as kurtosis, variability index, the skewness and the probability density function. The research allow to conclude whether an experiment is repeatable and how the selected operating parameters affect the acceleration of vibrations of the micro-cogeneration system.
8
Content available remote Power generation in small heat sources using thermoelectric generators
EN
This paper presents the results of studies conducted to determine the possibility of generating power using stove-fireplace with accumulation. During studies described in the paper, thermoelectric generator with the nominal power of 10 W and maximum operation temperature of 150°C was tested. Obtained results allowed to define real performance of the used generators. However, further tests are still needed to obtain better energy efficiency of the tested micro-scale cogeneration system.
PL
Artykuł prezentuje wyniki badań przeprowadzonych na potrzeby określenia możliwości wytwarzania energii elektrycznej z wykorzystaniem piecokominka. W czasie prowadzonych badań wykorzystany został moduł termoelektryczny o mocy 10 W, który charakteryzował się maksymalną temperaturą pracy równą 150°C. Otrzymane wyniki pozwoliły ocenić rzeczywistą wydajność zastosowanego generatora, a także wyciągnąć wniosek, że konieczne są dalsze testy dla uzyskania lepszej wydajności energetycznej stworzonego układu.
EN
In the first part of this paper there has been the thermodynamic analysis presented, for the microcogeneration system with the Stirling engine, for the working gases most frequently used, among other gases: helium, nitrogen, and air. The methods of performance regulation for the Stirling engine were depicted, among which the increase of the gas pressure in the working chamber and rising of the temperature of the upper heat source can be rated. The results of the experimental tests have been shown: the influence of the growth of pressure and temperature for the working gases, in this experiment they were: helium, nitrogen, and air. In this paper the focus was also placed on the maximum power flow. The tests were performed at the laboratory test stand with the single–action Stirling engine, alpha type, that is located at the Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, at the Integrated Laboratory of the Mechatronic Systems of Vehicles and Construction Machinery. In the second part of this paper the authors presented the power flow in the hybrid system (Senkey diagram) on the internal combustion engine with the Stirling engine, which is employed as a microcogeneration device of the distributed generation. It enables transforming a high-temperature waste heat into mechanical work and transition of mechanical work into electric energy with the help of an electrical appliance, which in consequence makes it possible selling the generated electrical energy to the mains. While analysing the power flow in the hybrid cogeneration system the attention was paid to low-temperature heat which can be utilised through electrical thermogenerators, among other things. The suggested microgeneration assembly (the Stirling engine and electrical thermogenerators) could be applied to regain the energy from the waste heat produced by the combustion engine during combustion of scrap heap biogas. The influence of used microcogeneration systems on the increase in general efficiency of the combustion engine was also taken into consideration in this work. Moreover, there were the test results presented of combustion gases temperatures in the exhaust system of the combustion engine fuelled by scrap heap biogas, with the full-load condition of the combustion engine. The chosen limitations of the Stirling engine build were also discussed, in the situation where it would cooperate with the combustion engine, with waste gases used as a high-temperature heat source.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.