Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microbiologically influenced corrosion
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Microbiologically influenced corrosion (MIC) poses serious problems for the petrochemical and refinery industries. Particularly favourable conditions for MIC arise in storage tanks and transmission pipelines for mixtures of diesel oil with the addition of a biocomponent (in Poland 7%). The best conditions for the development of MIC occur at the fuel-water interface, where microorganisms are provided with a source of food and water, the presence of which is one of the basic conditions for the development of microorganisms. The development of microbiological deposits leads to the formation of sludge, causing fuel deterioration and corrosion that occurs under the resulting biomass. Studies have shown that biodiesel, alone as a substitute and as an additive to traditional fuels, increases the corrosion rate of carbon steel used in pipelines, storage tanks and other fuel infrastructure. Therefore, there is an increasing demand for research on methods of protecting steel surfaces in these conditions. The phenomena causing the corrosion of tanks and directions of research related to the protection against corrosion of infrastructure will be discussed.
PL
Korozja powodowana przez mikroorganizmy (ang. microbiologically influenced corrosion, MIC) stwarza poważne problemy w przemyśle petrochemicznym i rafineryjnym. Szczególnie korzystne warunki do rozwoju MIC powstają w zbiornikach magazynowych i rurociągach przesyłowych mieszanek oleju napędowego z dodatkiem biokomponentu (w Polsce: 7%). Najlepsze występują na granicy faz paliwo- -woda, gdzie mikroorganizmy mają zapewnione źródło pożywienia i wody, co jest jednym z podstawowych warunków ich rozwoju. Tworzenie się osadów mikrobiologicznych prowadzi do powstawania szlamów, powodujących pogorszenie jakości paliwa i korozję, która zachodzi pod powstałą biomasą. Badania wykazały, że biodiesel, samodzielnie jako substytut i jako dodatek do tradycyjnych paliw, przyspiesza korozję stali węglowej stosowanej w rurociągach, zbiornikach magazynowych i innej infrastrukturze paliwowej. Wzrasta zatem zapotrzebowanie na badania nad sposobami zabezpieczania powierzchni stalowych w tych warunkach. Omówione zostaną zjawiska powodujące korozję zbiorników oraz kierunki badań związane z ochroną przed korozją infrastruktury paliwowej.
2
Content available remote Influence of alloying elements on adhesion of corrosion relevant microorganisms
EN
Corrosion relevant microorganisms enhance the rate of corrosion by their presence, by the excreted metabolites and by the exopolymeric substances. Biofilm formed by microbes influences the surface reactions at the metal/biofilm interface. Surface properties (homogeneity of oxide layer, surplus of alloying elements, pH, interference between the exopolymers and the metal ions as well as between the aggressive metabolites and the metal surface) have significant impact on the adhesion of microorganisms and on the biofilm formation. The corrosion relevant microorganisms are mostly dangerous in sessile form, embedded into biofilms, much less in planktonic form. This paper shortly discusses the microbially influenced corrosion (MIC) and its mechanisms and mainly focuses on the influence of the alloying metals on the microbial adhesion, biofilm formation and, as a consequence, on the MIC. Biofilms discussed here are formed either by isolated pure culture (Desulfovibrio desulfuricans) or by mixed population of cooling water on iron and on iron alloys with alloying elements:chromium, nickel, molybdenum and ruthenium. The surface with and without biofilms were visualized by light-, fluorescence- and atomic force microscopes. Microbiological techniques helped in enumeration of microorganisms. Correlation was found between the chemical nature/ concentration of the alloying elements and the number of microorganisms built in the biofilm.
PL
Mikroorganizmy związane z korozją przyspieszają procesy korozyjne poprzez swoją obecność, wydzielane metabolity oraz substancje egzopolimeryczne. Biofilm utworzony przez mikroorganizmy wpływa na reakcje powierzchniowe na granicy metalu i biofilmu. Właściwości powierzchni (homogeniczność warstwy tlenowej, nadbudowanie elementów stopowych, pH, interferencja między egzopolimerami a jonami metalu oraz między agresywnymi metabolitami a powierzchnią metalową) mają znaczący wpływ na adhezję mikrooranizmów oraz na powstawanie biofilmu. Mikroorganizmy związane z korozją są w dużej mierze niebezpieczne w formie osiadłej, występujące w biofilmach, a mniej niebezpieczne w formie planktonowej. Niniejsza praca krótko opisuje korozję biologiczną oraz jej mechanizmy i skupia się głównie na wpływie metali stopowych na adhezję mikroorganizmów, powstawanie biofilmu i, w konsekwencji, na korozję biologiczną. Omawiane biofilmy były tworzone z wykorzystaniem wyodrębnionej czystej kultury (Desulfovibrio desulfuricans), lub też z wykorzystaniem zespołu mikroorganizmów wody chłodzącej na powierzchni żelaza i jego stopach z pierwiastkami stopowymi: chromem, niklem, molibdenem i rutenem. Powierzchnie z biofilmami i bez nich zostały ukazane w mikroskopach: optycznym, flurescencyjnym i atomowym. Techniki mikrobiologiczne pomogły w wyliczeniu mikroorganizmów. Znaleziono korelację pomiędzy chemiczną naturą/koncentracją elementów stopowych a ilością mikroorganizmów zbudowanych w biofilmie.
3
Content available remote Two Cases of High Alloy Austenitic Steel Failures
PL
Przedstawiono przypadki awarii konstrukcji wykonanych ze stali austenitycznych. Pierwszy przypadek dotyczy rury odlewanej odśrodkowo Ø 52,6 x 5,8 mm wykonanej ze stali w gatunku 25-35 CrNi, która pracowała w wysokiej temperaturze i w środowisku redukcyjnym (ac >> 1). W drugiej części pracy przedstawiono natomiast wyniki badań elementów konstrukcji, tj. elementu wodomierza i rurociągu wody chłodzącej wykonanych ze stali austenitycznej. W obu przypadkach w trakcie stosunkowo krótkiej eksploatacji wykryto nieszczelności. Na podstawie przeprowadzonych badań wykazano, że przyczyną awarii jest korozja mikrobiologiczna spowodowana bakterią redukującą siarkę (SRB), a nie technologia spawania.
EN
The article presents failures of structures made of austenitic steels. The first part is concerned with accelerated (centrifugally) cast tubes (Ø 52.6 x 5.8 mm) made of steel 25-35 CrNi exposed to high temperature and severe reducing environment (ac >> 1). The second part of the article presents test results related to a water meter element and a cooling water pipeline made of austenitic steel. In both cases, a relatively short period of service was accompanied by the appearance of leaks. The tests revealed that the failures were triggered by microbiological corrosion caused by a sulphur reducing bacteria and not by the welding technology applied.
EN
Sulphate-reducing bacteria (SRB) are predominant microorganisms involved in microbiologically influenced corrosion (MIC) of stainless steels. Metabolic production of hydrogen sulphide by SRB leads to formation of sulphides ions which significantly influence the anodic and cathodic processes and ultimately enhances the corrosion of materials. This phenomenon can be especially harmful to highly alloyed steels. The paper presents the results on microbiologically influenced corrosion (MIC) induced by pure SRB strains on 2205 duplex stainless steel (DSS). In the present study, steel coupons were exposed to SRB of Desulfovibrio desulfuricans species. Biofilm formed on 2205 DSS caused the seeming ”ennoblement” of the metal surface, which resulted in an increase of corrosion potential. Electrochemical polarization studies performed on samples covered with biofilm revealed that bacteria presence in corrosive medium may increase the metal susceptibility to pitting. However, a slight decrease in pitting and repassivation potential values were observed after 30 days. The SRB-influenced attack is initiatedby selective etching at locations of lower chromium and molybdenum contents. Therefore, the austenite phase was found to be more susceptible to MIC induced by SRB.
PL
Bakterie redukujące siarczany (BRS) stanowią dominującą grupę mikroorganizmów wywołujących korozję mikrobiologiczną w stalach odpornych na korozję. Tworzenie siarkowodoru w wyniku aktywności metabolicznej BRS wyraźnie wpływa na przebieg procesów katodowych i anodowych, zwiększając ostatecznie szybkość korozji materiałów. Zjawisko to może być szczególnie niebezpieczne dla stali wysokostopowych. Artykuł przedstawia wyniki badań korozji mikrobiologicznej wywołanej przez czyste szczepy BRS w stali duplex 2205. W niniejszej pracy próbki stali poddano testom ekspozycyjnym w środowisku zawierającym BRS z gatunku Desulfovibrio desulfuricans. Biofilm BRS utworzony na stali powodował pozorne „uszlachetnienie” stali, czego skutkiem był wzrost potencjału korozyjnego. Badania elektrochemiczne na próbkach pokrytych biofilmem wykazały, że ekspozycja w środowisku BRS może prowadzić do rozwoju korozji wżerowej stali. Jednakże zmiany wartości potencjału korozji wżerowej i potencjału repasywacji były obserwowane dopiero po 30 dniach. Zniszczenia korozyjne inicjowane przez BRS miały charakter lokalny. Obserwowano selektywne trawienie obszarów o niższej zawartości chromu i molibdenu, czym wykazano, że austenit jest fazą bardziej podatną na rozwój korozji wżerowej wywołanej aktywnością metaboliczną BRS.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.