Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metodologia powierzchni odpowiedzi
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Synteza materiału katodowego LiMn2O4 dla akumulatorów litowo-jonowych
PL
Spinel LiMn₂O₄ został zsyntetyzowany i wykorzystany do przygotowania materiałów katodowych do baterii litowo-jonowych. Materiały te otrzymano w różnych warunkach syntezy (rodzaj czynników chelatujących, pH, temperatura reakcji, czas reakcji) i badano pod kątem wydajności elektrochemicznej przy użyciu modelu metodologii powierzchni odpowiedzi. Odczyn mieszaniny reakcyjnej odegrał znaczącą rolę w przygotowaniu materiału katody LiMn₂O₄. Zoptymalizowany wskaźnik retencji wyniósł 95,57%.
EN
LiMn₂O₄ spinel was synthesized and used for prepn. cathode materials for Li-ion batteries. The materials were studied for electrochem. performance under varying synthesis conditions (types of chelating agents, pH, reaction temp., reaction time) by using the response surface methodol. model. The pH played a significant role in prepn. of the LiMn₂O₄ cathode material. The optimized retention rate was 95.57%.
EN
Treatment of Municipal wastewater by Electrocoagulation (EC) process using punched aluminium and zinc electrodes was studied in a batch EC cell reactor. Response surface methodology (RSM) based on Central Composite Design (CCD) was utilized to optimize the operating parameters for the removal of % Total Suspended Solids (TSS) and % Chemical Oxygen Demand (COD) from Municipal Sewage. Effect of operating parameters such as Electrode Distance (x1), Electrolysis Time (x2) and Voltage (x3) has been optimized for the removal of TSS and COD. The prediction of removal percentage of TSS and COD in various Operational circumstances is done by using Quadratic model. The significance of each operating parameter was computed by Analysis of variance (ANOVA). To achieve the maximum removal of % TSS and % COD, the optimum conditions were Electrode distance(x1)-3 cm, Electrolysis Time (x2)-70.299 minute and Voltage (x3)-6.5V. It was observed that the performance of electrocoagulation process increased up to 61.45% for COD removal, and 73.73% for TSS removal using punched electrode compared to plane electrodes.
EN
The current study focuses on the performance of a solar greenhouse dryer for drying of potato chips in Solar Dryer and Open sun conditions in Western Maharashtra. Potato chips is a value added product that can be effectively used during throughout the year as snacks, a side dish or an appetizer. It can be either deep dried or backed for consumption. The dried potato contains a high fiber content and it helps to lower the cholesterol level in blood reducing the risk of blood pressure if consumed backed. Potato chips can effectively be stored for one year to six months and consumed as snacks. The experiment was conducted for drying of potato chips in Solar Greenhouse Dryer and open sun conditions on 1st of April 2021 for 6 hours. The initial weight of the potato chips to be dried was 500 grams both for the solar greenhouse dryer and open sun drying conditions. The experiment was conducted at Bahe, Borgaon, Tal-Walwa, Dist-Sangli, Maharashtra, India located at 17.115°N and 74.33°E. The experimental observations collected during the tests were set as input data for the Design of the Experiments (DoE) i.e., for Response Surface Modelling (RSM). The main aim of using DoE i.e., Response Surface Modelling, is to obtain an optimum region for drying of potato chips in the Solar Greenhouse Dryer, from the surface plot; the region of maxima and minima was obtained. The contour plot obtained during modeling resembles the optimum region of drying; the optimum region for drying of potato chips is 47 to 50°C respectively. The Moisture Removal Rate (MRR) for drying of potato chips in the Solar Greenhouse Dryer and Open sun drying is 83% and 78% respectively. The drying rate observed during the experiment has a better resemblance with simulated Response Surface Modelling.
EN
The current study focuses on the performance of the Solar Greenhouse Dryer for drying of grapes for raisin production in the Solar Dryer and Open sun condition in Western Maharashtra. The grape is also known as Vitis Vinifera, and it is a sub-tropical fruit with excess pulp content. The grapes are used as an immune booster as it contains various Phyto-chemicals which reduce various diseases. It is estimated that nearly 80% of grapes produced in India are exported to European countries. The Maharashtra state ranks first in the production of grapes; probably, Western Maharashtra produces nearly 800 thousand tons of grapes every year. The major wastage of grapes is due to a low sugar content, glossy appearance, shrinkage, excess water in the berry, scorching and size variations. Therefore, there is a need to preserve grapes by drying and production of raisins for a non-seasonal requirement. The experiment was conducted for drying of grapes in the Solar Greenhouse Dryer and Open Sun conditions from 1st of April to 4th of April for 48 hours. The initial weight of the grapes to be dried was 500 grams for both the Solar Greenhouse Dryer and Open Sun drying conditions. The experiment was conducted at Bahe, Borgaon, Tal-Walwa, Dist-Sangli, Maharashtra, India located at 17.115oN and 74.33oE. The experimental observations collected during the `experimentation were set as input data for the Design of Experiments i.e., for Response Surface Modelling (RSM). The main aim of using DOE i.e., Response Surface Modelling, is to obtain an optimum region for drying of grapes in the Solar Greenhouse Dryer, from the Surface plot; a region of maxima and minima was obtained. The contour plot obtained during modelling resembles the optimum region of drying, the optimum region for drying grapes is 45 to 50oC respectively. The Moisture Removal Rate (MRR) for drying of grapes in the Solar Greenhouse Dryer and in the Open Sun drying is 73.6% and 57.2% respectively. The drying rate observed during the experiment has a better resemblance with simulated Response Surface Modelling.
EN
This article deals with the optimization of friction stir welding process parameters with filler ratios on dissimilar Aluminium alloy groups. For this purpose, 6 series Aluminium alloy 6082 and 5 series Aluminium alloy 5052 were taken. Microhardness property was conducted under various rotational speeds, welding speed, plunge depth, Center distance between the holes and filler mixing ratio. The Central Composite Design (CCD), the most commonly used Response Surface Methodology (RSM), is considered to develop the prediction equation. A validation analysis is carried out, and the results were compared with the relative impact of input parameters on weld nugget microhardness. It is observed that the increase in welding speed with plunge depth and filler ratio result in the increase of weld nugget microhardness up to a maximum value. The maximum weld nugget hardness of fabricated joint was obtained with the welding process parameters combination of 1000 rpm rotational speed, 125 mm/min welding speed, 0.15 mm plunge depth, 2 mm centre distance between the holes, and filler ratio of 95% Mg and 5% Cr.
EN
This research aimed to increase knowledge of the various responses of drape parameters to different selected fabric properties. The principal goal is to optimise the fabric properties and obtain the desired draping effect for garment textiles by the graphic method and AHP method. The goal is to establish a model that reflects the impact of fabric properties, such as the bending rigidity in the warp, weft and skew directions, shear stiffness, weight, and thickness on drape parameters such as the drape coefficient (CD), number of folds (NF), folding depth index (FDI) and draped distance ratio (DDR).
PL
Badania miały na celu poszerzenie wiedzy na temat wpływu właściwości tkanin na ich układalność. Głównym celem pracy była optymalizacja właściwości tkanin i uzyskanie pożądanego efektu drapowania tekstyliów odzieżowych metodą graficzną i metodą AHP. Celem było stworzenie modelu, który odzwierciedla wpływ właściwości tkaniny, takich jak: sztywność zginania w kierunkach osnowy, wątku i skosu, sztywność ścinania, waga i grubość na parametry układania, takie jak: współczynnik układania (CD), liczba fałdy (NF), wskaźnik głębokości składania (FDI) i współczynnik odległości drapowania (DDR).
EN
The influences of the pollution layer parameters including; conductivity, position and length on the performance of high-voltage cylindrical insulator were investigated. Parameters effects and their interactions have been assessed and determined using the variance statistical technique and the relation between parameters and the flashover voltage, maximum electric field and the breakdown strength is modeled by the response surface methodology (RMS). The 3D model from Comsol Multiphysics was used for modeling and the FEM method was utilized for simulations. The findings demonstrate that the flashover voltage of the non-uniformly contaminated surface is primarily affected by the pollution layer length. Simulation results show that the intensity of the electric field rises with the increasing in length of pollution layer and its position. It was noted that the experimental tests in laboratory for non-uniform contamination are in strong alignment with simulation studies. The results of this analysis should expand our understanding about the performance of outdoor insulators under specific contaminated conditions. The knowledge gathered can be used to enhance the configuration of insulators used in contaminated regions and it is believed that the current study has resulted methodology to estimate reliably and realistically the pollution performance of cylindrical porcelain insulators.
8
EN
Most of the existing statistical forecasting methods utilize the historical values of wind power to provide wind power generation prediction. However, several factors including wind speed, nacelle position, pitch angle, and ambient temperature can also be used to predict wind power generation. In this study, a wind farm including 6 turbines (capacity of 3.5 MW per turbine) with a height of 114 meters, 132-meter rotor diameter is considered. The time-series data is collected at 10-minute intervals from the SCADA system. One period from January 04th, 2021 to January 08th, 2021 measured from the wind turbine generator 06 is investigated. One period from January 01st, 2021 to January 31st, 2021 collected from the wind turbine generator 02 is investigated. Therefore, the primary objective of this paper is to propose a combined method for wind power generation forecasting. Firstly, response surface methodology is proposed as an alternative wind power forecasting method. This methodology can provide wind power prediction by considering the relationship between wind power and input factors. Secondly, the conventional statistical forecasting methods consisting of autoregressive integrated moving average and exponential smoothing methods are used to predict wind power time series. Thirdly, response surface methodology is combined with autoregressive integrated moving average or exponential smoothing methods in wind power forecasting. Finally, the two above periods are performed in order to demonstrate the efficiency of the combined methods in terms of mean absolute percent error and directional statistics in this study.
EN
Soil erosion is one of the most leading environmental and public health problems in the world which dislodges considerable volumes of soil annually. In order to control soil erosion, several soil factors should be taken into account. Regarding the importance of soil properties on erosion occurrence, it is necessary to focus on soil properties. The aim of this study is to evaluate the efect of physical parameters that consist of sand %, silt %, clay %, SP % and stone % along with hydraulic properties including theta s, theta r, alpha n and Ks (cm/day) on the amount of soil erosion in Emamzadeh watershed. The above-mentioned factors were optimized using response surface methodology. The soil texture in the study area is mostly silty clay loam, and the main soil orders are Entisols and Inceptisols. Moreover, the main land use in the study area is forest–rangeland. The results proved that both physical and hydraulic valuables illustrated a signifcant efect on all of the independent parameters. The optimized values of diferent physical parameters were 60.241 for sand, 14 for silt, 41.025 for clay, 58.729% for SP and 3.83% for stone. A theta r of 0.09, theta s of 0.457 alpha of 0.014, n of 1.3 and Ks of 46.01 were found to be optimal values. The results of this study indicated that at optimal studied parameters, the values of the soil erosion before and after application of management scenarios were found to be 11.537 and −2.253, respectively. Results show that both physical and hydraulic parameters have signifcant efects at the 1% level on the soil erosion before and after application of management scenarios. The obtained results could assist policy-makers with decisions aimed at minimizing soil erosion in this watershed. In summary, using the simulation–optimization techniques helps to evaluate the efect of management scenarios, then select and apply the best one to minimize the soil erosion outcomes.
EN
Since G.E.P. Box introduced central composite designs in early fifties of 20th century, the classic design of experiments (DoE) utilizes response surface models (RSM), however usually limited to the simple form of low-degree polynomials. In the case of small size datasets, the conformity with the normal distribution has very weak reliability and it leads to very uncertain assessment of a parameter statistical significance. The bootstrap approach appears to be better solution than – theoretically proved but only asymptotically equal – t distribution based evaluation. The authors presents the comparison of the RSM model evaluated by a classic method and bootstrap approach.
EN
The design of experiment (DoE) is a methodology originated from early 1920s when Fisher’s papers created the analysis of variance and first known experimental designs: latin squares. It is focused on a construction of empirical models based on measurements obtained from specifically structured and driven experiments. Its development resulted in the constitution of four distinctive branches recognized by the industry: factorials (full or fractional), Taguchi’s robust design, Shainin’s Red-X® and a response surface methodology (RSM). On one hand, the well-known success stories of this methodology implementations promise great benefits, while on other hand, the mathematical complexity of mathematical and statistical assumptions very often lead to improper use and wrong inferences. The possible solution to avoid such mistakes is the expert system supporting the design of experiments and subsequently the analysis of obtained data. The authors propose the outline of such system and provides the general analysis of the ontology and related inference rules.
EN
This study aims to investigate the effects of process parameters: feed, depth of cut and flow rate, on the temperature during face milling of the D2 tool steel under two different lubricant conditions, Minimum Quantity Lubrication (MQL) and Nano fluid Minimum Quantity Lubrication (NFMQL). Deionized water with the flow rate range 200–400 ml/h was used in MQL. 2% by weight concentration of Al2O3 nano particles with deionized water as a base fluid used as NFMQL with the same flow rate. Response surface methodology RSM central composite design CCD was used to design experiment run, modeling and analysis. ANOVA was used for the adequacy and validation of the system. The comparison shows that NFMQL condition reduced temperature more efficiently during machining.
EN
The possibility of removing organic compounds from wastewater originating from the photochemical production of printed circuit boards by use of waste acidification and disposal of precipitated photopolymer in the first stage and the UV-Fenton method in a second stage has been presented. To optimize the process of advanced oxidation, the RSM (Response Surface Methodology) for three independent factors was applied, i.e. pH, the concentration of Fe(II) and H2O2 concentration. The use of optimized values of individual parameters in the process of wastewater treatment caused a decrease in the concentration of the organic compounds denoted as COD by approx. 87% in the first stage and approx. 98% after application of both processes. Precipitation and the decomposition of organic compounds was associated with a decrease of wastewater COD to below 100 mg O2/L whereas the initial value was 5550 mg O2/L. Decomposition of organic compounds and verification of the developed model of photopolymers removal was also carried out with use of alternative H2O2 sources i.e. CaO2, MgO2, and Na2CO3·1,5H2O2.
PL
Przedstawiono możliwość usuwania związków organicznych ze ścieków pochodzących z fotochemicznej produkcji obwodów drukowanych przez zastosowanie w pierwszym etapie zakwaszania ścieków i usuwaniem wytrąconego fotopolimeru, a w drugim etapie metody UV-Fentona. Do optymalizacji procesu pogłębionego utleniania zastosowano metodę powierzchni odpowiedzi dla trzech czynników niezależnych, tj.: pH, stężenia Fe(II) oraz stężenia H2O2. Zastosowanie zoptymalizowanych wartości poszczególnych parametrów w procesie oczyszczania ścieków spowodowało zmniejszenie stężania związków organicznych oznaczanych jako COD o ok. 87% w pierwszym etapie oraz ok. 98% po zastosowaniu obu procesów. Wytrącanie oraz rozkład związków organicznych związane były ze zmniejszeniem się COD ścieków do poniżej 100 mg O2/L, przy początkowej wartości wynoszącej 5550 mg O2/L. Rozkład związków organicznych oraz weryfi kację opracowanego modelu procesu usuwania fotopolimerów przeprowadzono także z zastosowaniem alternatywnych źródeł H2O2, tj.: CaO2, MgO2, i Na2CO3·1,5H2O2.
EN
Titanium alloy (Ti-6Al-4V) has been extensively used in aircraft turbine-engine components, aircraft structural components, aerospace fasteners, high performance automotive parts, marine applications, medical devices and sports equipment. However, wide-spread use of this alloy has limits because of difficulty to machine it. One of the major difficulties found during machining is development of poor quality of surface in the form of higher surface roughness. The present investigation has been concentrated on studying the effects of cutting parameters of cutting speed, feed rate and depth of cut on surface roughness of the product during turning of titanium alloy. Box-Behnken experimental design was used to collect data for surface roughness. ANOVA was used to determine the significance of the cutting parameters. The model equation is also formulated to predict surface roughness. Optimal values of cutting parameters were determined through response surface methodology. A 100% desirability level in the turning process for economy was indicated by the optimized model. Also, the predicted values that were obtained through regression equation were found to be in close agreement to the experimental values.
PL
Stop tytanu (Ti-6Al-4V) jest szeroko stosowany do budowy elementów turbinowych silników lotniczych i innych podzespołów samolotów, elementów złącznych w technice lotniczej i astronautycznej, wysokiej jakości części samochodowych, w technice okrętowej i medycznej, a także w sprzęcie sportowym. Niemniej, powszechne zastosowanie tego stopu jest ograniczone trudnościami z jego obróbką. Jednym z podstawowych problemów jest niska jakość obrabianej powierzchni, która charakteryzuje się znaczną chropowatością. Przedstawiona praca jest poświęcona badaniu wpływu parametrów skrawania, takich jak szybkość skrawania, szybkość posuwu i głębokość skrawania na chropowatość powierzchni uzyskaną w procesie toczenia stopu tytanu. Przy zbieraniu danych nt. chropowatości powierzchni wykorzystano planowanie eksperymentu metodą Boxa-Behnkena. Do określenia poziomu istotności parametrów skrawania zastosowano metodę analizy wariancji, ANOVA. Sformułowano także równania modelu, pozwalającego przewidzieć chropowatość powierzchni. Optymalne wartości parametrów skrawania wyznaczono, stosując metodę powierzchni odpowiedzi (RSM). Wartości parametrów wyznaczone na podstawie równań regresji są bardzo bliskie wartościom uzyskanym eksperymentalnie.
EN
The article presents the effect of rotational and travelling speed and down force on the spindle torque acting on the tool in Friction Stir Processing (FSP) process. The response surface methodology (RSM) was applied to find a dependence combining the spindle torque acting on the tool with the rotational speed, travelling speed and the down force. The linear and quadratic models with interaction between parameters were used. A better fitting was achieved for a quadratic model. The studies have shown that the increase in rotational speed causes a decrease in the torque while the increase in travelling speed and down force causes an increase in the torque. The tests were conducted on casting aluminium alloy AlSi9Mg. Metallography examination has revealed that the application of FSP process results in a decrease in the porosity in the modified material and microstructure refining in the stir zone. The segregation of Si and Fe elements was evident in the parent material, while in the friction stir processed area this distribution was significantly uniform.
PL
W pracy przedstawiono wpływ prędkości obrotowej i przesuwu narzędzia oraz siły docisku na moment obrotowy działający na narzędzia w procesie tarciowej modyfikacji z mieszaniem materiału (FSP). Do wyznaczenia zależności pomiędzy momentem a prędkościami obrotową i przesuwu oraz siłą docisku wykorzystano metodę powierzchni odpowiedzi. Wykorzystano modele liniowy i kwadratowy uwzględniające interakcje pomiędzy parametrami wejściowymi. Lepsze dopasowanie zapewnił model kwadratowy. Wyniki badań wykazały, iż wzrost prędkości obrotowej narzędzia powoduje zmniejszenie momentu działającego na narzędzie, natomiast wzrost prędkości przesuwu i siły docisku powoduje wzrost momentu. Badania były przeprowadzone na odlewniczym stopie aluminium AlSi9Mg. Badania metalograficzne ujawniły, że zastosowanie procesu FSP powoduje rozdrobnienie ziarna oraz redukcję porowatości w obszarze mieszania. Wyraźna segregacja Si i Fe w materiale rodzimym została wyeliminowana, a rozkład pierwiastków jest bardziej jednorodny.
EN
Emulsion liquid membrane technique (ELM) was used for the extraction of phenol from synthetic and industrial effluents. In this study, the liquid membrane used for phenol removal was composed of kerosene as the solvent, Span-80 as the surfactant and Sodium hydroxide as an internal reagent. Statistical experimental design was applied for the optimization of process parameters for the removal of phenol by ELM. The effects of process parameters namely, Surfactant concentration, membrane or organic to internal phase ratio (M/I) and emulsion to an external phase ratio (E/E) on the removal of phenol were optimized using a response surface method. The optimum conditions for the extraction of phenol using Response surface methodology were: surfactant concentration - 4.1802%, M/I ratio: 0.9987(v/v), and E/E ratio: 0.4718 (v/v). Under the optimized condition the maximum phenol extraction was found to be 98.88% respectively.
EN
This study aims to explore the efficiency of an agro waste material for the remediation of Pb(II) contaminated water. A factorial design approach is adopted to optimize removal efficiency and to study the interaction between effective variables. A face-centered Draper-Lin composite design predicted 100% removal efficiency at optimum variables; pH 8, initial concentration of Pb(II) ion 12mg/L, sorbent dose 200mg and agitation time 110 min. Regration coefficient (R2 = 99.9%) of a plot of the predicted versus the observed values and p value (>0.05) confirms the applicability of the predicted model. Langmuir and Dubinin-Radushkevich (D-R) isotherm models were applicable to sorption data with the Langmuir sorption capacity of 21.61š0.78 mg/g. The energy of sorption was found to be 13.62š0.32 kJ/mol expected for ion-exchange or chemisorption nature of sorption process. Characterization of Grewia seed suggested a possible contribution of carboxyl and hydroxyl groups in the process of biosorption. The present study shows that Grewia seeds can be used effectively for the remediation of Pb(II) contaminated water.
EN
The photooxidative destruction of C. I. Basic Red 46 (BR46) by UV/S2O82- process is presented. Central Composite Design (CCD) was employed to optimize the effects of operational parameters on the photooxidative destruction efficiency. The variables investigated were the initial dye and S2O82- concentrations, reaction time and distance of the solution from UV lamp. The predicted values of the photodestruction efficiency were found to be in good agreement with the experimental values (R2 = 0.9810, Adjusted R2 = 0.9643). The results of the optimization predicted by the model showed that the maximum decolorization efficiency (>98%) was achieved at the optimum conditions of the reaction time 10 min, initial dye concentration 10 mg/l, initial peroxydisulfate concentration 1.5 mmol/l and distance of UV lamp from the solution 6 cm. The figure-of-merit electrical energy per order (EEo) was employed to estimate the electrical energy consumption and related treatment costs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.